
- •1. Нелинейные сар. Понятия: «пространство состояний», «фазовая траектория», «фазовый портрет».
- •2. Проблема двойственности в линейном программировании.
- •3. Составляющие информационной системы (ис). Модели жизненного цикла ис.
- •4, 31. Методы определения оптимальных параметров настройки промышленных регуляторов.
- •5. Автоколебания в сар. Определение параметров автоколебаний с помощью графических построений.
- •6,14. Математическая постановка задач оптимального управления. Пример: «Нажимное устройство реверсивного прокатного стана».
- •7,11,59. Назначение, классификация, и функции субд. Структура субд и назначение основных компонентов. Транзакции. Свойства транзакций.
- •8,20. Оценка качества сар по временным характеристикам
- •9. Представление импульсного элемента при исследовании импульсных сар.
- •12. Принципы системного подхода в моделировании. Сетевые модели.
- •13. Связь между спектрами сигналов на входе и выходе простейшего импульсного элемента. Теорема Котельникова.
- •15. Модели управления передачей, обработкой и хранением данных в информационных системах на основе технологии «клиент-сервер»
- •16. Непрерывно-стохастические модели на примере систем массового обслуживания.
- •17. Процессы конечной длительности в импульсных сар.
- •19, 55. Характеристика нормальных форм реляционной модели данных.
- •21. Алгебраический аналог критерия устойчивости Гурвица для исар.
- •22. Системы управления на основе нечеткой логики.
- •23. Реляционная модель данных. Понятие функциональной зависимости. Процесс нормализации базы данных.
- •Целостность данных
- •Реляционная алгебра
- •Нормализация базы данных
- •24. Синтез сар по логарифмическим характеристикам.
- •25. Метод гармонической линеаризации нелинейностей.
- •26. Системы управления на основе искусственных нейронных сетей.
- •27,35. Цифровые регуляторы и выбор периода квантования.
- •28. Аппроксимация кривых разгона методом площадей.
- •29. Характер движения в нелинейных и линейных сар.
- •30. Техническая диагностика. Математические основы технической диагностики.
- •32. Функции операционных систем: управление задачами, данными, исключениями и восстановлением.
- •33. Устойчивость линейных сар. Признаки устойчивости. Запасы устойчивости линейных сар.
- •34. Статистические методы распознавания. Метод Бейеса.
- •36. Реляционная алгебра Кодда
- •37. Устойчивость линейных непрерывных систем. Критерий устойчивости Найквиста.
- •38. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент.
- •Черный ящик
- •39. Определение, назначение и классификация компьютерных сетей. Базовые топологии локальных компьютерных сетей.
- •40. Уровни памяти в вычислительных системах и их взаимодействие. Регистры, кэш, озу, взу. Их типы и классификация.
- •41. Критерий устойчивости Михайлова для непрерывных и линейных сар.
- •Доказательство
- •42. Частотные методы идентификации динамических объектов.
- •43. Определение, назначение и классификация компьютерных сетей. Топология глобальной компьютерной сети.
- •44. Использование внешних устройств в компьютерной сети. Сетевые устройства ввода/вывода,
- •Хранение информации на сервере, файлообменники и внешние ресурсы. Сетевые устройства
- •Типы сетевых устройств Сетевые карты
- •45. Виды корректирующих средств в сар. Недостатки последовательной коррекции.
- •46. Типовые процессы регулирования.
- •Апериодический переходной процесс с минимальным временем регулирования.
- •Переходной процесс с 20%-ным перерегулированием и минимальным временем первого полупериода.
- •Переходной процесс, обеспечивающий минимум интегрального критерия качества.
- •47. Эталонная модель взаимодействия открытых систем osi. Характеристика уровней osi.
- •48. Регистровая память компьютера и её назначение. Типы регистров процессора в реальном режиме. Дополнительные регистры защищённого режима.
- •Новые системные регистры микропроцессоров i80x86
- •49. Гармоническая линеаризация. Физический смысл коэффициентов гармонической линеаризации.
- •50. Идентификация объектов по временным характеристикам. Определение кривой разгона объекта по его импульсной характеристике.
- •51. Общая структура современных асу тп
- •53. Устойчивость нелинейных систем. Метод л.С. Гольдфарба.
- •54. Идентификация динамических систем. Активные и пассивные методы идентификации.
- •Внутренние и внешние, параллельные и последовательные интерфейсы компьютера. Примеры интерфейсов и шин, их основные характеристики.
- •Последовательный и параллельный интерфейсы ввода-вывода
- •57. Точные методы исследования устойчивости и автоколебаний в нелинейных системах. Частотный метод в.М. Попова.
- •58. Методы аппроксимации кривых разгона объекта.
- •61. 65. Статические характеристики нелинейных элементов.
- •62. Обеспечивающие подсистемы информационно - управляющих систем и их характеристики.
- •63. Методы расчета осау. Вариационный метод.
- •Вариационное исчисление
- •64. Назначение системы прерываний эвм. Синхронные и асинхронные, внутренние и внешние прерывания.
- •66. Промышленные регуляторы, их назначение и передаточные функции.
- •67. Функциональные подсистемы информационно- управляющих систем и их характеристики.
- •68. Виртуальные ресурсы в компьютерных сетях. Виртуальные накопители, виртуальные внешние устройства, виртуальная память и виртуальные процессоры.
- •Виртуализация устройств и структура драйвера
- •69. Классификация задач оптимального управления.
- •70. Организационные подсистемы информационно- управляющих систем и их характеристики.
- •71. Методы расчета оптимальных осау. Принцип максимума Понтрягина.
- •Вариационное исчисление
- •Принцип максимума Понтрягина
- •74. Принципы построения автоматизированных систем управления.
- •76. Типы команд и разновидности адресации в микропроцессорах. Cisc, risc и vliw процессоры.
- •Cisc-процессоры
- •Risc-процессоры
- •Vliw-процессоры
- •77. Понятие области нормальных режимов регулятора (онр) и области допустимых настроек регулятора (одн)
- •78. Состав интегрированной системы автоматизации предприятия.
- •79. Математическая модель и математическое моделирование. Этапы математического моделирования.
- •Функционально полные наборы логических элементов
16. Непрерывно-стохастические модели на примере систем массового обслуживания.
Условно СМО делится на две части:
Обслуживаемая система. В ней возникают запросы и обслуживание системы. Она принимает запросы и удовлетворяет их. Схематично можно представить следующим образом.
Источник – устройство или группа устройств, люди от которых поступает требования в систему обслуживания.
Вх. поток требований – это требования поступающие от источника , образуют поток требований или заявок или запросов.
Очередь. В тех случаях, когда не м.б. сразу удовлетворены – возникает очередь. Очередь присуща не всякой системе.
Обслуживающее устройство – аппарат или канал. Этот элемент создается во всех СМО. От его характеристик зависит время обслуживания требований, длине очереди, время ожидания в очереди.
Вых.поток обслуживающих требований – это поток требований выходящих из обслуживающего устройства. Иногда выходной поток из одной системы является вых.потоком из другой системы. Пример: Зрители посмотревшие футбол обслуживаемый стадионом пошли после окончания матча в метро – другой СМО.
Классификация СМО: Выберем признак ожидания выполнения требований. Здесь 4 типа систем:
СМО с потерями, отказами (городская телефонная система).
Смо с ожиданием (пропускная система в метро)
СМО с ограниченной длиной очереди (в магазинах самообслуживания очередь к кассе не м.б. как угодно длинной).
СМО с ограниченным временем ожидания (в жизненных ситуациях мы переходим из одной очереди в др.).
Признак количества обслуживающих устройств: одноканальные и многоканальные.
Признак местонахождения источника требований:
Если источник поступления требований находится вне СМО, то это разомкнутая система.
Если он находится внутри самой системы, то это замкнутая система. Пример: система ремонта и наладки трактора в тракторной бригаде.
В основе СМО лежит понятие потока случайных событий. С потоками связано понятие процесса. 4 класса случайных процессов.
17. Процессы конечной длительности в импульсных сар.
Передаточная
функция ИСАР
после умножения и числителя и знаменателя
на
примет вид
, (1)
где p – переменная преобразования Лапласа,
ai, bj – коэффициенты, зависящие от параметров ИСАР.
Известно так же, что передаточная функция ИСАР есть ничто иное, как D-преобразование Лапласа от весовой функции ИСАР ω(mT).
(2)
Из сравнения (1) и (2) получается
(3)
Здесь ω(iT) – дискреты весовой функции ИСАР (i=0,1,2,…).
Из этого выражения
ясно, что поскольку числитель левой
части (3) почти никогда не разделится
целиком (без остатка) на знаменатель,
число дискрет ω(iT) будет бесконечно
большим, т.е. переходный процесс в ИСАР
закончится при
,
т.е. за бесконечно большое число тактов.
Однако, при определенном подборе
параметров ИСАР можно получить процесс
конечной длительности (ПКД), заканчивающийся
за конечное число тактов. Это случится,
если числитель левой части (3) нацело
разделится на знаменатель, а это возможно
в том числе, если an≠0,
а
.
В этом случае максимальная длительность процесса, т.е. число тактов, за которое процесс закончится, определяется максимальной степенью числителя, т.е. «n».