
- •1.Терминология и объект информатики
- •2. Предметная область информатики. Цель и задачи дисциплины
- •3. Категории информатики
- •5.Виды и свойства информации
- •6. Основные понятия систем счисления. Двоичная система счисления
- •8. Перевод чисел из одной системы в другую Преобразование двоичных чисел в десятичные
- •9.Общие принципы представления информации. Числовая система эвм
- •10. Представление символьной информации в эвм
- •11. Форматы данных
- •12. Классификация и характеристики эвм
- •13. Устройство и основные принципы построения компьютеров
- •14. Классическая архитектура компьютера. Многопроцессорная и другие архитектуры компьютера
- •15. Устройство центрального процессора
- •Топологии многопроцессорных систем
- •Доступ к памяти в многопроцессорных системах
- •16. Устройство памяти. Устройства образующие оперативную память
- •18. Внешние запоминающие устройства персонального компьютера
- •19. Печатающие устройства
- •Принтеры ударного типа
- •Струйные принтеры
- •Фотоэлектронные принтеры
- •Термические принтеры
- •Плоттеры
- •20. Устройства для передачи компьютерных данных на большие расстояния
- •21. Система ввода-вывода bios, как интерфейс аппаратных средств
- •Произношение названия
- •Назначение bios материнской платы
- •Настройка bios материнской платы
- •Звуковые сигналы bios
- •22. Основные способы организации межкомпьютерной связи
- •23. Понятие топологии сети и базовые топологии
- •24. Локальные и глобальные вычислительные сети
- •25. Способы соединения между собой локальных и глобальных вычислительных сетей
- •Способы проверки сети Что делать, если не работает?
- •26. Сеть Интернет. Основные понятия. Теоретические основы Интернет. Службы Интернет Интернет
- •Написание
- •История
- •Протоколы
- •Юридические аспекты и общие свойства
- •Субкультуры
- •Интернет-сообщества
- •Интернет-зависимость
- •Троллинг
- •Киберпанк
- •Цензура
- •Перспективы
- •Предсказания появления
- •Основные понятия сети Интернет
- •27. Основные понятия мультимедиа
- •Аппаратные средства мультимедиа
- •29 Технологии мультимедиа
- •30 Алгоритм и его свойства
- •31 Формы записи алгоритма
- •32 Базовые алгоритмические структуры
- •33 Языки программирования низкого уровня
- •34 Компоненты образующие алгоритмический язык
- •Классификация программного обеспечения
- •Операционные системы и оболочки
- •37 Файловая система компьютера
- •38 Основные понятия операционной системы
- •39 Характеристика операционной системы ms dos
- •40 Модульная система Структура операционной системы ms dos
- •41 Структура операционной системы ms dos
- •42 Операционные оболочки
- •Операционные системы Windows
- •Общие сведения о текстовых редакторах
- •48 Приемы и средства автоматизации разработки документов. Создание комплексных документов
- •52 Основные понятия Баз Данных
- •Реляционный подход к построению инфологической модели Понятие информационно-логическоймодели
- •Функциональные возможности субд
- •55 Предметные области для экспертных систем
- •Наиболее известные/распространённые эс
- •56 Обобщенная структура экспертной системы. Основные понятия и определения
- •57 Классификация экспертных систем
- •Классификация эс по решаемой задаче
- •Классификация эс по связи с реальным временем
- •58 Инструментальные средства построения экспертных систем
- •58 Технология разработки экспертных систем
- •59 Направления исследований в области искусственного интеллекта
- •Представление знаний в системах искусственного интеллекта
- •62 Инструментарий программирования искусственного интеллекта
- •Тест Тьюринга
- •Когнитивное моделирование
- •Агентно-ориентированный подход
- •Интуитивные
- •63 Компьютерное математическое моделирование
- •Назначение пакетов прикладных программ и их классификация
- •Классификация ппп
- •Общая характеристика пакетов прикладных программ
- •66 Библиотека стандартных программ
- •67 Угрозы безопасности информации в автоматизированных системах
- •68 Обеспечение достоверности, безопасности и конфиденциальности информации
- •Способы защиты информации
- •69 Компьютерные вирусы, их свойства и классификация
- •70 Пути проникновения вирусов в компьютер. Методы защиты от вирусов
Агентно-ориентированный подход
Последний подход, развиваемый с начала 1990-х годов называется агентно-ориентированным подходом, или подходом, основанным на использовании интеллектуальных (рациональных) агентов. Согласно этому подходу, интеллект — это вычислительная часть (грубо говоря, планирование) способности достигать поставленных перед интеллектуальной машиной целей. Сама такая машина будет интеллектуальным агентом, воспринимающим окружающий его мир с помощью датчиков и способной воздействовать на объекты в окружающей среде с помощью исполнительных механизмов.
Этот подход акцентирует внимание на тех методах и алгоритмах, которые помогут интеллектуальному агенту выживать в окружающей среде при выполнении его задачи. Так, здесь значительно сильнее изучаются Алгоритмы поиска и принятия решений.
Интуитивные
Самый общий подход предполагает, что ИИ будет способен проявлять поведение, не отличающееся от человеческого, причём, в нормальных ситуациях. Эта идея является обобщением подхода теста Тьюринга, который утверждает, что машина станет разумной тогда, когда будет способна поддерживать разговор с обычным человеком, и тот не сможет понять, что говорит с машиной (разговор идёт по переписке).
Писатели-фантасты часто предлагают ещё один подход: ИИ возникнет тогда, когда машина будет способна чувствовать и творить. Так, хозяин Эндрю Мартина из «Двухсотлетнего человека» начинает относиться к нему как к человеку, когда тот создаёт игрушку по собственному проекту. А Дейта из Звёздного пути, будучи способным к коммуникации и научению, мечтает обрести эмоции и интуицию.
63 Компьютерное математическое моделирование
математическое моделирование - вид моделирования, при котором моделирование, включая построение модели, осуществляется средствами математики и логики.
Математическое моделирование:
аналитическое
машинное
цифровое
аналоговое
Математическое маделирование разделяется на аналитическое и машинное моделирование.
При аналитическом моделировании результат получается а процессе раздумий, размышлений, умозаключений.
При машинном моделировании математическая модель создается и анализируется с помощью вычислительной техники.
Рассмотрим процесс компьютерного математического моделирования, включающий численный эксперимент с моделью (см. схему) Первый этап - определение целей моделирования. Основные из них таковы: 1)модель нужна для того, чтобы понять как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающей средой(понимание); 2) модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление): 3) модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием. Чаще всего невозможно да и не нужно учитывать все факторы, которые могут повлиять на значения интересующих величин. Отбрасывание менее значимых факторов огрубляет объект моделирования и способствует пониманию его главных свойств и закономерностей.
Следующий этап - поиск математического описания. На этом этапе необходимо перейти от абстрактной формулировки модели к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстает перед нами в виде уравнения, системы уравнений, системы неравенств, и т.д.
Когда математическая модель сформулирована, выбираем метод ее исследования. как правило, для решения одой и той же задачи есть несколько конкретных методов, различающихся эффективностью, устойчивостью и т.д.
Разработка алгоритма и составление программы для ЭВМ - это творческий трудно формализуемый процесс. Выбор языка программирования зависит от характера задачи и склонностей программиста.
После составления программы решаем с ее помощью простейшую тестовую задачу (желательно с заранее известным ответом) с целью устранения грубых ошибок. Это - лишь начало процедуры тестирования. Тестирование может продолжаться очень долго.
Затем следует собственно численный эксперимент, и выясняется, соответствует ли модель реальному объекты (процессу). Модель адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментальными с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.