
- •1.Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц.
- •2. Определители 2, 3 и n-го порядков (определения и их свойства). Теорема Лапласа о разложении определителя по элементам строки или столбца.
- •3. Квадратная матрица и ее определитель. Особенная и неособенная квадратные матрицы. Присоединенная матрица. Матрица, обратная данной, и алгоритм ее вычисления.
- •4. Понятие минора k-го порядка. Ранг матрицы (определение). Вычисление ранга матрицы с помощью элементарных преобразований. Пример.
- •5. Линейная независимость столбцов (строк) матрицы. Теорема о ранге матрицы.
- •8. Система лин.Ур-ний:
- •7. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.
- •8. Теорема Кронекера-Капелли. Условие определенности и неопределенности совместных систем линейных уравнений.
- •9. Базисные (основные) и свободные (неосновные) переменные системы m линейных уравнений с n переменными. Базисное решение.
- •10. Система линейных однородных уравнений и ее решения. Условие существования ненулевых решений такой системы.
- •12 Скалярное произведение двух векторов (определение) и его выражение в координатной форме. Угол между векторами.
- •14. Векторное (линейное) пространство. Его размерность и базис. Теорема о существовании и единственности разложения вектора линейного пространства по векторам базиса.
- •15. Скалярное произведение векторов в n-мерном пространстве. Евклидово пространство. Длина (норма) вектора.
8. Система лин.Ур-ний:
Аmxn*Хnx1=Вmx1 <=> (ф.1)
(a11x1+a12x2+…+ аnxn=b1
(a21x1+a21x2+… +a2nxn=b2
(….
(аmx1+а2mx2+… +аmnхn=bm
В матричной форме система имеет вид АХ=В, где
(а11 a12 ... a1n)
A= (a21 a22 ... a2n)
ф.2(... ... ... ... );
(am1 am2 .. amn)
(x1)
X= (x2)
ф.3 (....);
(xn)
(b1)
B= (b2)
ф.4(....);
(bm)
называются собственно матрицей системы, матрицами-столбцами переменных и свободных членов.
Решение системы:а)методом обр.м-цы. Ур-е в матричной ф-ме имеет вид АХ+В. Найти обр.м-цу. И найдём Х по ф-ле Х=А-1В,(т.е.х1,х2,х3.)
б)По ф-ле Крамера. Найти определитель системы ^=|A|. Если он не=0,то сист.имеет единств.реш. Далее вычислить опред-ли м-ц ^1,^2,^3,полученных их м-цы А,заменой соотв-но 1-го,2-го и 3-го ст-цов столбцом своб.членов. Далее по ф-лам Крамера:х1=^1/^, х2=^2/^, х3=^3/^.
Расширенной м-цей системы наз.м-ца (А|В),полученная из м-цы сист.А добавлением к ней ст-ца членов этой системы,т.е. (А|В)=(ф.2|ф.4)
Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.
r<m – ур-я с-мы(строки расш.м-цы)зависимые;
r=m –ур-я с-мы (стр.расш.м.)независимые;
r(A)не=r(A|B)- с-ма несовм-ная;
r(A)=r(A|B)=r – с-ма совм-ная;
r<n – с-ма неопред.(бескон.мн.реш.);
r=n – с-ма опред-ная (единств.реш.)
Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.
Если система лин.ур-й имеет единств.решение Х=(х1,х2,…хn),то такая сист.наз.определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист.не определённая.
7. Метод Гаусса решения системы n линейных уравнений с п переменными. Понятие о методе Жордана – Гаусса.
Метод Гаусса – метод послед-го исключ.переменных.
Сначала(на 1-м шаге прямого хода Гаусса) из всех ур-ний,кроме 1-го исключается переменная х1. Потом (на 2 шаге) из всех ур-й,кроме первых 2-х исключается переменная х2 и т.д.,пока последнее ур-е не приобретёт вид:С * Хn=bm, если ч-ло С=0, а bm не=0,то с-ма не совместная,т.е.нет решений. Если С=0 и bm=0,т.е. 0*Хn=0,то с-ма неопределённая,т.е. имеет бескон.мн.реш.,то с-ма совместно-определённая. В этом сл-е Хn=bn/C
Полученное зн-е Хn подстав.в предпосл.ур-е,находим Хn-1 и тд.,пока не получ.все неизв-е.
Обратный ход Гаусса. Из м-цы ступенч.вида записывается ур-е. Далее,начиная с конца находим все переменные. Допустим Х4. Подставляем в верхнее и нах-м Х3 и т.д.
Метод Гаусса — Жордана исп-ся для реш.квадр.систем лин.ур-ний, нахождения обрат.м-цы, отыскания ранга м-цы. Метод явл-ся модификацией метода Гаусса. Назван в честь Гаусса и Жордана.
Теорема Кронекера-Капелли. Сист.лин.ур-й совмест.тог.и т.тог,ког.ранг м-цы сист.А равен рангу расшир.м-цы (А|B) этой с-мы.
r<m – ур-я с-мы(строки расш.м-цы)зависимые;
r=m –ур-я с-мы (стр.расш.м.)независимые;
r(A)не=r(A|B)- с-ма несовм-ная;
r(A)=r(A|B)=r – с-ма совм-ная;
r<n – с-ма неопред.(бескон.мн.реш.);
r=n – с-ма опред-ная (единств.реш.)
Если у сист.ур-ния есть реш-е,то такая система совместна,если решения ур-я нет, то не совместная.
Если система лин.ур-й имеет единств.решение Х=(х1,х2,…хn),то такая сист.наз.определённой. Если СЛУ имеет больше, чем одно реш-е,то такая сист.не определённая.