
- •Структура, свойства и функции белков.
- •Универсальность первичной структуры. Белки, выполняющие одинаковые функции в разных организмах имеют одинаковую или близкую первичную структуру.
- •В природных белках одна и та же аминокислота не встречается подряд больше 3 раз.
- •Структура и свойства ферментов.
- •Для ферментов и неорганических катализаторов характерны общие свойства:
- •Ферменты классифицируют по химической структуре:
- •Функции белковой и небелковой части фермента.
- •Факторы, влияющие на активность ферментов.
- •Анализ уравнения Михаэлиса-Ментен.
- •Km показывает:
- •Зависимость скорости ферментативной реакции от концентрации фермента.
- •Зависимость скорости ферментативной реакции от температуры.
- •Зависимость скорости реакции от рН
- •Влияние рН.
- •Классификация ферментов.
- •Номенклатура ферментов.
- •Аэробные дегидрогеназы – переносят протоны и электроны на кислород.
- •Дегидрирование гидроксильных групп
- •Дегидрирование альдегидных групп (дегидрирование глицеральдегид – 3 – фосфата)
- •Дегидрирование аминогрупп
- •Влияние низкомолекулярных веществ на активность фенрментов.
- •Значение ингибирования активности ферментов.
- •Ингибирование бывает 2-х видов:
- •Необратимое ингибирование
- •Конкурентное
- •Неконкурентное
- •Vmax – одинакова
- •Неконкурентное, обратимое ингибирование.
- •Vmax – уменьшается.
- •Различают три вида регуляторных ферментов:
- •Активация зимогенов.
- •Уровни организации ферментов в клетке.
- •I уровень организации
- •II уровень организации
- •III уровень организации
- •Биологическое окисление.
- •Сходство между окислением в организме и вне организма.
- •Различия между окислением в организме и вне организма.
- •Виды биологического окисления.
- •Строение дыхательной цепи.
- •Пути использования энергии переноса электронов.
- •Энергия переноса электронов используется на синтез атф.
- •Энергия переноса электронов используется для выработки тепла.
- •Причины нарушения биологического окисления.
- •Обмен углеводов.
- •Обмен углеводов.
- •Значение углеводов в организме:
- •Углеводы – это основной энергетический материал.
- •Углеводы выполняют пластическую функцию. К ним относятся пентозы нуклеотидов и гликопротеинов, гетерополисахариды межклеточного вещества.
- •Углеводы могут превращаться в липиды и некоторые аминокислоты.
- •Гликолиз.
- •Стадии гликолиза.
- •1. Фосфорилирование глюкозы: реакция протекает необратимо, катализируется гексокиназой и требует затраты атф:
- •Значение анаэробного гликолиза:
- •II. При достаточном содержании о2 в клетке глю окисляется до конечных продуктов – со2, н2о и этот процесс называется аэробным окислением глю.
- •Глицерофосфатный челночный механизм;
- •Малатно-аспартатный челночный механизм. Глицерофосфатный челночный механизм.
- •Малатный челночный механизм.
- •Баланс аэробного гликолиза:
- •Анаэробный гликолиз – субстратное фосфорилирование – 2атф
- •2Пир 2 сн3соsKoА – окислительное декарбоксилирование 2 надн- 6атф
- •Регенерация 2 надн в челночном механизме - 6 атф
- •Включение в гликолиз других моносахаридов.
- •Пентозофосфатный (апотамический) путь окисления глюкозы.
- •Надфн, d используется как источник восстановительных эквивалентов в процессах биосинтеза жирных кислот, стероидов.
- •Рибозо-5-фосфата (пентозы), d используется для синтеза нуклеиновых кислот.
- •Образование атф.
- •Взаимосвязь пентозного пути и гликолиза.
- •Обмен гликогена.
- •Гликогенолиз – распад гликогена идет путем фосфоролиза.
- •Биосинтез углеводов.
- •Организационные принципы биосинтеза.
- •Фосфоенолпируват ббразуется из пирувата через оксалоацетат.
- •Вторая реакция гликолиза, которая не может использоваться для глюконеогенеза – это реакция фосфорилирования фру-6-ф, катализируемая фосфофруктокиназой.
- •Третьей обходной реакции в синтезе глюкозы является дефосфорилирование глю-6-ф с образованием глю.
- •Алкоголь тормозит глюконеогенез.
- •Окислительное декарбоксилирование пирувата.
- •Цикл трикарбоновых кислот.
- •Патология обмена углеводов.
- •Методы диагностики сахарного диабета.
- •Метод сахарной нагрузки.
- •Особенности обмена глюкозы в клетках опухали.
- •Гликогенозы.
- •Мышечные гликогенозы
- •Гемолитические анемии.
- •Особенности обмена углеводов в различных органах и тканях.
- •1. Обмен углеводов в печени.
- •Роль печени в обмене углеводов.
- •Обмен углеводов в мышцах.
- •Обмен углеводов в мышце.
- •Обмен углеводов в мозге.
- •Обмен углеводов в ткани мозга.
- •Обмен углеводов в эритроцитах.
- •Обмен углеводов в эритроцитах.
- •Регуляция обмена углеводов.
- •Концентрация метаболитов и глюкозы.
- •Воздействие гормонов. Внутриклеточные рецепторы.
- •Регуляция гликолиза.
- •Регуляция пируватдегидрогеназного комплекса.
- •Ингибирование продуктами реакции. Ацетил-КоА и надн ингибируют превращение
- •Регуляция нуклеотидами по принципу обратной связи.
- •Регуляция цтк.
- •2) Изоцитрат -оксоглутарат
- •3) Третьей регуляторной реакцией является реакция, катализируемая -кетоглутаратдегидрогеназой:
- •Регуляция цикла лимонной кислоты.
- •Активация пируваткарбоксилазы.
- •Гормональная регуляция обмена углеводов
- •Функции жирных кислот
- •Насыщенные жирные кислоты в основном энергетический материал (используются и как структурный материал).
- •Полинасыщенные жирные кислоты – эссенциальные соединения. Они не синтезируются в организме (линолевая) или синтезируются в недостаточном количестве.
- •Производные липидов
- •Транспорт липидов
- •Хиломикроны – самые крупные липопротеиды. Имеют низкую плотность (d 0,94 г/см3).Содержат 2% белка, 98% липиды, в основном триглицериды, которые поступают с пищей.
- •Функции аполипопротеинов:
- •Обмен триглицеридов.
- •Обмен триглицеридов.
- •Транспортные формы липидов.
- •Хиломикроны – крупные, рыхлые, 2% белка, 98% тг пищи.
- •Лпнп – 10-15% белка, 50% холестерина. Это основная транспортная форма холестерина и холестеридов.
- •Лпвп – 50% белка, остальные 50% распределены поровну между липидами.
- •Обмен триглицеридов.
- •Значение липидов в организме:
- •Липиды являются одним из компонентов клеточных мембран.
- •Липиды являются источником энергии для организма.
- •Липиды входят в состав водоотталкивающих и термоизоляционных покровов.
- •Переваривание и всасывание липидов
- •Ресинтез жиров в стенке кишечника
- •Промежуточный обмен липидов.
- •Внутриклеточный липолиз
- •Окисление жирных кислот.
- •Активация жирной кислоты происходит в митохондриальной мембране, где она катализируется ацил-КоА-синтетазой:
- •Перенос остатка жирной кислоты через мембрану митохондрий осуществляется карнитином:
- •Этапы -окисления
- •Расчет выхода энергии при окислении жирной кислоты
- •Окисление ненасыщенных жирных кислот
- •Окисление жирных кислот с нечетным числом углеродных атомов
- •Биосинтез жирных кислот
- •Механизм переноса ацетил – КоА через мембрану
- •Синтез ненасыщенных жирных кислот
- •Обмен и биологическое значение холестерина Переваривание и всасывание
- •Биосинтез холестерина
- •Регуляция биосинтеза холестерина
- •Транспорт холестерина
- •Судьба холестерина в клетке
- •Лнп с рецептором подвергается эндоцитозу и включается в лизосомы. Там лнп (аполипопротеиды, холестериды) распадаются. Хлороквин – ингибитор лизосомального гидролиза подавляет эти процессы.
- •Превращение холестерина в организме
- •Эстерификация холестерина
- •Окисление холестерина.
- •Окисление в монооксидазных системах печени и других органов
- •Экскреторные органы Моноокисдазная система.
- •Метаболизм кетоновых тел.
- •Холестерин в патологии.
Универсальность первичной структуры. Белки, выполняющие одинаковые функции в разных организмах имеют одинаковую или близкую первичную структуру.
В природных белках одна и та же аминокислота не встречается подряд больше 3 раз.
Вторичная структура белка.
Вторичная структура – это способ укладки полипептидной цепи в спиральную или складчатую конформацию.
Конформация – это пространственное расположение в органической молекуле замещающих групп, способных свободно изменять свое положение в пространстве без разрыва связей, благодаря свободному вращению вокруг одинарных углеродных связей.
Различают 2 вида вторичной структуры белка:
1. -спираль
2.
-складчатость.
Вторичную структуру стабилизируют водородные связи. Водородные связи возникают между атомом водорода в NH группе и карбоксильным кислородом.
Характеристика -спирали.
-спираль стабилизируется водородными связями, которые возникают между каждой первой и четвертой аминокислотой. Шаг спирали включает 3,6 аминокислотных остатка.
Образование -спирали происходит по часовой стрелке (правый ход спирали), т.к. природные белки состоят из L-аминокислот.
Для каждого белка характерна своя степень спирализации полипептидной цепи. Спирализованные участки чередуются с линейными. В молекуле гемоглобина и -цепи спирализованы на 75%, в лизоциме – 42%, пепсине – 30%.
Степень спирализации зависит от первичной структуры белка.
-спираль образуется самопроизвольно и является наиболее устойчивой конформацией полипептидной цепи, отвечающей минимуму свободной энергии.
В образовании водородных связей участвуют все пептидные группы. Это обеспечивает максимальную стабильность -спирали.
Спирализации белковой молекулы препятствует аминокислота пролин.
- складчатость имеет слабоизогнутую конфигурацию полипептидной цепи.
Для - складчатости характерны водородные связи в пределах одной полипептидной цепи или сложных полипептидных цепей.
В белках возможны переходы от -спирали к -складчатости и обратно вследствие перестройки водородных связей.
-складчатость имеет плоскую форму.
-спираль имеет стержневую форму.
Водородные связи – слабые связи, энергия связи 10 – 20 ккал/моль, но большое количество связей обеспечивает стабильность белковой молекулы.
В молекуле белка имеются прочные (ковалентные) связи, а также слабые, что обеспечивает с одной стороны стабильность молекулы, а с другой лабильность.
Третичная структура белка.
Третичной структурой белка называется способ укладки полипептидной цепи в пространстве.
По форме третичной структуры белка делят на глобулярные и фибриллярные.
В стабилизации третичной структуры белковой молекулы участвуют ковалентные связи (пептидные и дисульфидные). Основную роль в стабилизации играют нековалентные связи: водородные, электростатические взаимодействия заряженных групп, межмолекулярные ван-дер-вальсовы силы, взаимодействия неполярных боковых радикалов аминокислот, так называемые гидрофобные взаимодействия.
Гидрофобные радикалы аминокислот ала, вал, изолей, мет, фен в водной среде взаимодействуют друг с другом. При этом неполярные гидрофобные радикалы аминокислот как бы погружаются внутрь белковой молекулы, образуя там сухие зоны, а полярные радикалы оказываются ориентированными в сторону воды.
При укладке полипептидная цепь белка стремится принять энергетически выгодную форму с меньшим запахом энергии.
При формировании третичной структуры полипептидная цепь изгибается в местах нахождения пролина, глицина.
Глобулярные белки растворимы в воде, а фибриллярные нет.
Четвертичная структура белка.
Белки, состоящие из одной полипептидной цепи, имеют только третичную структуру (лизоцим, пепсин, миоглобин, трипсин).
Для белков, состоящих из нескольких полипептидных цепей, характерна четвертичная структура.
Под четвертичной структурой понимают объединение отдельных полипептидных цепей с третичной структурой в функционально активную молекулу белка. Каждая отдельная полипептидная цепь называется протомером и чаще не обладает биологической активностью.
В молекуле белка может быть несколько протомеров, которые при объединении образуют олигомер или мультимер.
Для белков с четвертичной структурой характерно понятие субъединицы.
Субъединица – это функционально активная часть молекулы белка.
Примером белка с четвертичной структурой является гемоглобин, состоящий из 4 протомеров: 2 и 2 -цепей.
Взаимодействие полипептидных цепей при формировании олигомера происходит за счет полярных групп аминокислотных остатков. Между полярными группами образуется ионная, водородные связи, гидрофобные взаимодействия.
Денатурация.
Денатурация – это процесс нарушения высших уровней организации белковой молекулы (вторичного, третичного, четвертичного) под действием различных факторов.
При этом полипептидная цепь разворачивается и находится в растворе в развернутом виде или в виде беспорядочного клубка.
При денатурации утрачивается гидратная оболочка и белок выпадает в осадок и при этом утрачивает нативные свойства.
Денатурацию вызывают физические факторы: температура, давление, механические воздействия, ультразвуковые и ионизирующие излучения; химические факторы: кислоты, щелочи, органические растворители, алкалоиды, соли тяжелых металлов.
Различают 2 вида денатурации:
Обратимая денатурация – ренатурация или ренактивация – это процесс, при котором денатурированный белок, после удаления денатурирующих веществ вновь самоорганизуется в исходную структуру с восстановлением биологической активности.
необратимая денатурация – это процесс, при котором биологическая активность не восстанавливается после удаления денатурирующих агентов.
Свойства денатурированных белков.
Увеличение числа реактивных или функциональных групп по сравнению с нативной молекулой белка (это группы COOH, NH2, SH, OH, группы боковых радикалов аминокислот).
Уменьшение растворимости и осаждение белка (связано с потерей гидратной оболочки), развертыванием молекулы белка, с «обнаружением» гидрофобных радикалов и нейтрализации зарядов полярных групп.
Изменение конфигурации молекулы белка.
Потеря биологической активности, вызванная нарушением нативной структуры.
Более легкое расщепление протеолитическими ферментами по сравнению с нативным белком – переход компактной нативной структуры в развернутую рыхлую форму облегчает доступ ферментов к пептидным связям белка, которые они разрушают.
Ферментные методы гидролиза основаны на избирательности действия протеолитических ферментов расщепляющих пептидные связи между определенными аминокислотами.
Пепсин расщепляет связи, образованные остатками фенилаланина, тирозина и глутаминовой кислоты.
Трипсин расщепляет связи между аргинином и лизином.
Химотрипсин гидролизует связи триптофана, тирозина и фенилаланина.