
- •1.Законы геометрической оптики. Абсолютный и относительный показатели преломления. Явление полного внутреннего отражения.
- •2.Электромагнитная теория света.
- •3. Интерференция света. Расчет интерференционной картины от двух когерентных источников.
- •4. Интерференция света в тонких плёнках
- •5.Кольца Ньютона.
- •6. Интерферометры. Интерферометрия.
- •7.Дифракция. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •3.8. Дифракция света
- •8. Дифракция Френеля от круглого отверстия и от диска.
- •9. Дифракция от щели.
- •10. Дифракционная решетка и ее характеристики.
- •11. Дифракция рентгеновских лучей. Рентгеноструктурный анализ.
- •12. Поглощение и рассеяние света.
- •13. Дисперсия света. Нормальная и аномальная дисперсии. Элементарная теория дисперсии света.
- •Электронная теория дисперсии светя
- •14.Эффект Доплера и его применение.
- •15. Естественный и поляризованный свет Естественный и поляризованный свет
- •16.Поляризация света при отражении и преломлении от границы раздела двух сред. Закон Брюстера
- •17.Явление двойного лучепреломления. Поляризационные приборы.
- •18. Искусственная оптическая анизотропия. Вращение плоскости полярязации.
- •19.Тепловое излучение. Основные понятия и определения. Модель абсолютного черного тела.
- •20.Закон Киргофа.Стефана-Больцмана,смещение Винаю
- •21.Формула Рэеля-Джинса и ультрофиолетовая катастрофа.Квантовая гипотеза и формула Планка.
- •22. Внешний фотоэффект.
- •23. Масса и импульс фотона.Давленеи света.Квантовое и волновое объйяснение давления света.
- •24. Эффект Комптона.
- •25. Волновые свойства микрочастиц. Гипотеза де Бройля.
- •26. Соотношение неопределенностей Гейзанберга.
- •27.Временное и стационарное уравнение Шредингера. Волновая функция и ее свойства.
- •28. Частица в одномерной яме с абсолютно непроицаемыми стенками.
- •29. Квантовый гармонический осцилятор.
- •30. Прохождение частицы через одномерный потенциальный барьер.
- •31.Вынужденное излучение. Лазеры.
- •§ 233. Оптические квантовые генераторы (лазеры)
- •32.Ядерная модель атома. Опыты Резерфорда.
- •33. Теория Бора. Модель атома Бора.
- •34. Квантово-мех модель атома водорода. Квант числа.
- •35.Опыт Эйнштейна и де Гааза. Спин. Полный момент импульса электрона.
- •36. Сложение моментов. Результирующий момент многоэлектронной системы.
- •37.Магнитный момент атома. Атом в механическом поле. Опыты Штерна и Герлаха
- •38. Принцип Паули. Построение периодической системы элементов.
- •39. Рентгеновские спектры. Закон Мози.
- •40. Двухатомные молекулы. Схема энергетических уровней. Комбинационное рассеяние света.
- •Теплоемкость твердых тел
- •Понятие о квантовой теории теплоемкости. Фононы
- •Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- •Спин ядра и его магнитный момент
- •Дефект массы и энергия связи ядра
- •Ядерные силы. Модели ядра
- •Радиоактивное излучение и его виды
- •§ 256. Закон радиоактивного распада. Правила смещения
- •. Закономерности -распада
- •Ядерные реакции и их основные типы
- •Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
9. Дифракция от щели.
Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск. Дифракционную картину наблюдаем на экране Э в точке В, лежащей на линии, соединяющей S с центром диска (рис. 260). В данном случае закрытый диском участок волнового фронта надо исключить из рассмотрения и зоны Френеля строить начиная с краев диска. Пусть диск закрывает m первых зон Френеля. Тогда амплитуда результирующего колебания в точке В равна
или
так как выражения, стоящие в скобках, равны нулю. Следовательно, в точке В всегда наблюдается интерференционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружен концентрическими с ним темными и светлыми кольцами, а интенсивность в максимумах убывает с расстоянием от центра картины.
С увеличением радиуса диска первая открытая зона Френеля удаляется от точки В и увеличивается угол т (см. рис. 258) между нормалью к поверхности этой зоны и направлением на точку В. В результате интенсивность центрального максимума с увеличением размеров диска уменьшается. При больших размерах диска за ним наблюдается тень, вблизи границ которой имеет место весьма слабая дифракционная картина. В данном случае дифракцией света можно пренебречь и считать свет распространяющимся прямолинейно.
Отметим, что дифракция на круглом отверстии и дифракция на диске впервые рассмотрены Френелем.
Как вариант:
Бесконечно длинную щель можно образовать, расположив ряжом две обращенные в разные стороны полуплоскости. Следовательно, задача и дифракции Френеля от щели может быть решена с помощью спирали Карню. Волновую пов-ть падающего света, плоскость щели и экран, на котором наблюдается дифракционная картина, будем считать параллельными друг другу. Для точки Р, лежащей против середины щели, начало и конец результирующего вектора находятся в симметричных относительно начала координат точках спирали. Если сместиться в точку Р’, лежащую против края щели, начало результирующего вектора переместится в середину спирали О.
Конец вектора переместится по спирали в направлении полюса F1. При углублении в область геометрической тени начало и конец результирующего вектора будут скользить по спирали и в конце концов окажутся на наименьшем расстоянии друг от друга (вектор, соответствующий точке Р’’).
Интенсивность света при этом достигнет минимума. При дальнейшем скольжении по спирали начало и конец вектора снова отойдут друг от друга и интенсивность будет расти. То же самое будет происходить при смещении из точки Р в противоположное сторону, так как дифракционная картина симметрична относительно середины щели.
Если изменять ширину щели, сдвигая полуплоскости в противоположные стороны, интенсивность в средней точке Р будет пульсировать, проходя попеременно через максимумы (а) и отличные от нуля минимумы (б).
10. Дифракционная решетка и ее характеристики.
Дифракционная решётка — оптический прибор, работающий по принципу дифракции света, представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность. Первое описание явления сделал Джеймс Грегори, который использовал в качестве решётки птичьи перья.
Виды решеток:
Отражательные: Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отражённом свете
Прозрачные: Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.
Описание явления: Фронт световой волны разбивается штрихами решётки на отдельные пучки когерентного света. Эти пучки претерпевают дифракцию на штрихах и интерферируют друг с другом. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр.
Формулы:
Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.
Если
известно число штрихов (
),
приходящихся на 1 мм решётки, то период
решётки находят по формуле:
мм.
Условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:
где
—
период
решётки,
—
угол
максимума данного цвета,
—
порядок
максимума, то есть порядковый номер
максимума, отсчитанный от центра
картинки,
— длина волны.
Если
же свет падает на решётку под углом
,
то:
Характеристики:
Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ — для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить если продифференцировать формулу дифракционной решётки
Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k.