Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ММЭ_Амелина.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
6.32 Mб
Скачать

Классификация моделей

Математические модели технических устройств могут быть классифицированы по ряду признаков:

1. По xapaкmepy отображаемых процессов выделяют:

  • статические

  • динамические модели.

2. По способу представления модели различают:

  • аналитические

  • графические

  • табличные

Аналитические модели определяют прибор или компоненту в виде уравнений, описывающих его ВАХ или в форме дифференциальных уравнений описывающих переходные процессы в моделируемой схеме и характеризующие инерционность элемента.

Графические модели позволяют представить компоненты в виде графиков ВАХ или в виде эквивалентных схем замещения.

Табличные модели позволяют представить схему или элемент в виде цифровых таблиц, полученных в ходе экспериментального исследования объекта моделирования и соответствующих графикам экспериментальных ВАХ. Табличные модели используют обычно в том случае; если аналитическую модель построить трудно вследствие сложной зависимости. Иногда при сложных функциональных аналитических зависимостях для ВАХ их созна-тельно табулируют, если это позволяет объем памяти ЭВМ, и создают таким образом, возможно менее точную, но более удобную модель.

Перечисленные выше модели могут быть выполнены в виде подпрограмм, при таком представлении они превращаются в цифровую модель.

Аналитические и графические модели могут быть также заданы в виде алгоритма вычисления внешних параметров модели, при этом модель носит название алгоритмической модели. После оформления подпрограммы в соответствии с приведенным алгоритмом модель становится цифровой.

Цифровые модели могут быть достаточно точными, т.к. степень их сложности в основном определяется сложностью программы и допустимыми для расчета затратами машинного времени. В настоящее время цифровые модели используются все более широко в связи с развитием САПР РЭА.

3. По xapактеру зависимостей модели делятся на:

  • линейные

  • нелинейные

Имеется особый класс кусочно-линейных моделей, нелинейность которых проявляется в ограниченном количестве точек стыка линейных участков.

Нелинейные модели, естественно, оказываются более точными, но и более сложными.

4. По диапазону рабочих сигналов модели классифицируются на:

  • модели большого сигнала

  • малосигнальные

Малосигнальные модели, как правило, представляют собой линейные модели; модели для большого сигнала учитывают нелинейность характеристик активных и пассивных элементов схемы (биполярных и полевых усилительных приборов).

5. По диапазону рабочих частот выделяют:

  • низкочастотные

  • высокочастотные

  • сверхвысокочастотные

Низкочастотные модели не учитывают инерционность компонентов модели и, поэтому низкочастотные модели используют для расчета схем по постоянному току (в статическом режиме).

Высокочастотные модели — модели более высокого уровня, они учитывают помимо особенностей статического режима инерционность компонентов. Поэтому такие модели дополняют системой дифференциальных уравнений, учитывающей инерционность компонентов, или эквивалентными схемами реальных приборов на высоких частотах — индуктивностями и емкостями выводов, инерционностями, определяющими физические процессы в компонентах (например, накопление заряда), емкостями областей структур и т.п.

Особенность низкочастотных и высокочастотных моделей состоит в том, что они выполняются на сосредоточенных элементах и поэтому для этих моделей справедливы законы Кирхгофа.

СВЧ модели отличаются от высокочастотных моделей учетом пространственных и временных координат, поэтому для анализа и расчета СВЧ-схем необходимо использовать уравнения Максвелла. Применение законов Кирхгофа оправдано лишь в диапазоне частот до 10 гГц, где размеры компонентов (особенно компонентов ИС) остаются меньше длины волны  = 3 см.