Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
STAT_shpor.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
293.95 Кб
Скачать

10.Сезонные колебания. Методы измерения сезонных колебаний.

Метод аналитического выравнивания используется для изучения сезонных колебаний.

Сезонными называются периодические колебания, возникающие под влиянием смены времени года.

Для познания закономерностей развития социально-экономических явлений во внутригодовой динамике необходимо иметь количественные характеристики развития изучаемых явлений по месяцам и кварталам годового цикла.

Сезонные колебания присутствуют во всех сферах жизни общества: в производстве, обращении, потреблении. Большое значение сезонные колебания приобретают в изучении покупательского спроса населения на отдельные товары и виды услуг, а также на изменение цен и инфляцию. Цель изучения сезонных колебаний – это прогнозирование и разработка оперативных мер по управлению их развитием во времени.

Сезонные колебания характеризуются индексами сезонности. Для выявления сезонных колебаний обычно берут данные за ряд лет, чтобы выявить устойчивую сезонную волну. Если ряд динамики содержит определенную тенденцию в развитии явления, то сначала осуществляют аналитическое выравнивание ряда, затем сравнивают фактические теоретические уровни. Индекс сезонности в этом случае равен

где n – число лет, за которые даны уровни;

уф – фактические данные;

Уt – теоретические данные.

Расчет сезонных колебаний можно выполнять другим методом в зависимости от характера динамики.

Если годовой уровень явления из года в год остается относительно неизменным, то индексы сезонности исчисляются по формуле.

Для сопоставления величины сезонных колебаний по нескольким предприятиям или периодам может быть использовано среднее квадратическое отклонение, исчисляемое по формуле

где n – число месяцев;

Jсез. – индекс для каждого месяца.

Чем меньше среднее квадратическое отклонение, тем меньше величина сезонных колебаний.

11.Виды и формы взаимосвязей между явлениями

2 вида связи между факторами и результативными признаками: функциональная связь корреляционная связь При функциональной связи каждому значению величины факторного признака соответствует только одно значение результативного признака. Функциональные связи обычно выражаются формулами и исследуются в математике и физике. Пример, площадь круга – результативный признак – прямо пропорциональна его радиусу – факторный признак. Однако, функциональные связи имеют место и в экономике.

Пример, заработная плата рабочего повременной оплате равна произведению часовой тарифной ставки на число отработанных часов. Функциональная связь является точной и полной, т.к. обычно известны все факторы, оказывающие влияние на результативный признак. При функциональных связях величина результативного признака полностью показывается факторными признаками.

При корреляционной связи под влиянием изменения многих факторных признаков (ряд из которых может быть неизвестен), меняется средняя величина результативного признака. Пример, корреляционная связь между влиянием удобрения и урожайностью культур, между производительностью и энергооснощенностью предприятия. Важная особенность корреляционных связей состоит в том, что они обнаруживаются не в отдельных случаях, а в массовых общественных явлениях. Проявление корреляционных зависимостей подвержено действию закона больших чисел: лишь в достаточно большом числе фактов индивидуальные особенности и второстепенные факты сгладятся и зависимость проявится достаточно отчетливо.

Вторая важная особенность корреляционных связей состоит в том, что эти связи неполные. Даже на массовых данных обнаруженные зависимости не будут носить полного, т.е. функционального характера. В зависимости от действия функциональных и корреляционных связей их делят на: прямые обратные

Прямая связь – направление изменения результативного признака совпадает с направлением изменения признака фактора, т.е. с увеличением факторного признака увеличивается и результативный и наоборот. Обратная связь – направление изменения результативного признака не совпадает с изменением факторного признака, т.е. при увеличении факторного признака результативный уменьшается и наоборот. По форме связи бывают:

1. Прямолинейные – с возрастанием величины факторного признака происходит непрерывное возрастание результативного признака и наоборот. Математически такая зависимость представляется уравнением прямой. График представлен в виде прямой. Эту зависимость называют линейной.

2. Криволинейные – с возрастанием величины факторного признака изменение результативного признака происходит неравномерно, направление его может даже меняться. Графически этот процесс представлен гиперболой, параболой и ломаной. Для корреляционных связей есть различия в том случае, если: исследуется связь между одним признаком – фактором и результативным признаком; исследуется связь между несколькими признаками – факторами и результативным признаком. В первом случае имеет место парная связь и парная корреляция, во втором случае многофакторная связь и множественная корреляция.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]