
- •1. Кинематика материальной точки.
- •2. Скорость и ускорение
- •3. Криволинейное движение тела
- •4. Динамика материальной точки. Законы Ньютона
- •5. Импульс тела
- •6. Импульс системы материальных точек.
- •8. Кинетическая и потенциальная энергия. Механическая энергия. Консервативные силы.
- •9. Закон сохранения механической энергии
- •10. Связь консервативной силы с потенциальной энергией
- •11. Центральный удар шаров. Абсолютно упругий удар.
- •12. Центральный удар шаров. Абсолютно неупругий удар. Частично неупругий удар. Коэффициент восстановления относительной скорости при ударе.
- •13. Кинематика вращательного движения. Угловая скорость, угловое ускорение. Связь с линейными величинами: линейной скоростью, тангенциальным(касательным) ускорением и нормальным ускорением.
- •14. Динамика вращательного движения. Момент силы. Момент инерции. Основное уравнение динамики вращательного движения.
- •15. Момент импульса. Закон сохранения момента импульса.
- •16.Кинетическая энергия вращающегося тела.
- •17.Движение в неинерциальных системах отсчета. Кинематика относительного движения.Абсолютные,Относительные,переносные скорости и ускорения, кориолисово ускорение.
- •18. Движение в неинерциальных системах отсчета. Динамика относительного движения. Основное уравнение деинаики относительного движения материальной точки.
- •19. Преобразование Галилея. Экспериментальные факты подтверждающие, теорию относительности.
- •20. Постулаты Эйнштейна. Преобразования Лоренца
- •Следствия из преобразований Лоренца
- •24. Релятивистский импульс
- •25. Релятивистское выражение для энергии.
- •26. Работа и теплота
- •27. Теплоёмкость идеального газа.Теплоёмкость при постоянном объёме и постоянном давлении.Уравнение Майера.
- •28. Теплоёмкости одноатомных и многоатомных газов
- •30. Изоэнтропийный процесс
- •31. Изотермический процесс
- •32. Обратимые и необратимые процессы.Энтропия.
- •33. Второе начало термодинамики.
- •34. Цикл Карно.
- •35.Основное уравнение кинетической теории газов.
- •37. Барометрическая формула. Распределение Больцмана.
- •38. Средняя длина свободного пробега молекул.
- •39. Явления переноса в газах. Диффузия.
- •40. Явление переноса. Элементарная теория диффузии.
- •41. Явления переноса. Теплопроводность газов.
- •42. Явления переноса. Вязкость газа.
- •43. Механические колебания. Свободные гармонические колебания.
- •44. Свободные затухающие колебания.
- •45. Вынужденные механические колебания.
- •46. Явление механического резонанса.
12. Центральный удар шаров. Абсолютно неупругий удар. Частично неупругий удар. Коэффициент восстановления относительной скорости при ударе.
Абсолютно неупругий удар — удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным, то тела соединяются и продолжают дальнейшее своё движение как единое тело.
Как и при любом ударе, при этом выполняются закон сохранения импульса и закон сохранения момента импульса, но не выполняется закон сохранения механической энергии. Часть кинетической энергии соудареямых тел в результате неупругих деформаций переходит в тепловую.
Хорошая модель абсолютно неупругого удара — сталкивающиеся пластилиновые шарики.
Частично неупругий удар — часть энергии упругой деформации переходит в кинетическую энергию движения.
Коэффициент восстановления относительной скорости при ударе - в теории удара, величина, зависящая от упругих свойств соударяющихся тел и определяющая, какая доля начальной относительной скорости этих тел восстанавливается к концу удара.
13. Кинематика вращательного движения. Угловая скорость, угловое ускорение. Связь с линейными величинами: линейной скоростью, тангенциальным(касательным) ускорением и нормальным ускорением.
Враща́тельное движе́ние — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.
При выборе некоторых осей вращения, можно получить сложное вращательное движение — сферическое движение, когда точки тела движутся по сферам.
Равномерное движение по окружности
В случае равномерного вращения тела формой траектории его материальных точек являются окружности радиусов Ri, где i - порядковый номер выбранной точки тела. При этом модули их скоростей остаются постоянными Vi = const.
Положение материальной точки в пространстве определяется углом ее поворота f относительно начального значения и радиусом вектором Ri. За один оборот радиус-вектор поворачивается на угол2p, а его конец проходит путь равный 2p·Ri.
Для описания характера вращения используются следующие характеристики: V - линейная скорость и w - угловая скорость. Определение угловой скорости вводится по аналогии с линейной.
Мгновенная угловая скорость равна скорости изменения угла во времени w = df/dt.
Единицей измерения величины w является радиан в секунду (рад/c). Направление вектора угловой скорости задается по правилу правого винта. При равномерном вращении
V = 2pR/T, w = f/Dt = 2p/T, где T - время одного полного оборота по окружности (период вращения).
Линейная скорость направлена по касательной в каждой точке траектории.
Угловая и линейная скорости связаны соотношением V = w·R. Для описания вращательного движения вводится понятие частоты вращения n, которая равна числу оборотов тела в единицу времени
n = N/Dt, где N - число оборотов материальной точки за время Dt.
Период обращения связан с частотой вращения соотношением T = 1/n.
Движение по криволинейной траектории
Частным случаем такого движения является движение тела по окружности неизменного радиуса с постоянным ускорением. Ускорение вращательного движения тела (угловое ускорение) равно
e = dw/dt
Если ускорение с течением времени не изменяется, то
e = Dw/Dt, где Dw = w - w0 - разность угловых скоростей в произвольный момент времени t и в момент времени t = 0.
Угловое ускорение также как и скорость является векторной величиной. Оно направлено вдоль оси вращения (параллельно вектору угловой скорости, в случае ее возрастания со временем и антипараллельно - в случае ее убывания).
Поскольку ускорение является векторной величиной, то его можно разложить на составляющие. При описании вращательного движения принято использовать понятия касательного и нормального направлений. Соответственно вводятся понятия тангенциального (касательного) и центростремительного (нормального) ускорений.
Тангенциальное ускорение at характеризует изменение вектора линейной скорости по величине at = dV/dt и направлено по касательной в данной точке траектории. Нормальное ускорение an характеризует изменение вектора линейной скорости по направлению an = V2/R = w2·R и сориентировано вдоль нормали .
a = an·n + at·t, где n и t - единичные векторы вдоль нормального и тангенциального направлений.
Модуль вектора ускорения равен a = (an2 + at2)1/2. Тангенциальное и угловое ускорения связаны между собой соотношением at = e·R.