
- •1. Кинематика материальной точки.
- •2. Скорость и ускорение
- •3. Криволинейное движение тела
- •4. Динамика материальной точки. Законы Ньютона
- •5. Импульс тела
- •6. Импульс системы материальных точек.
- •8. Кинетическая и потенциальная энергия. Механическая энергия. Консервативные силы.
- •9. Закон сохранения механической энергии
- •10. Связь консервативной силы с потенциальной энергией
- •11. Центральный удар шаров. Абсолютно упругий удар.
- •12. Центральный удар шаров. Абсолютно неупругий удар. Частично неупругий удар. Коэффициент восстановления относительной скорости при ударе.
- •13. Кинематика вращательного движения. Угловая скорость, угловое ускорение. Связь с линейными величинами: линейной скоростью, тангенциальным(касательным) ускорением и нормальным ускорением.
- •14. Динамика вращательного движения. Момент силы. Момент инерции. Основное уравнение динамики вращательного движения.
- •15. Момент импульса. Закон сохранения момента импульса.
- •16.Кинетическая энергия вращающегося тела.
- •17.Движение в неинерциальных системах отсчета. Кинематика относительного движения.Абсолютные,Относительные,переносные скорости и ускорения, кориолисово ускорение.
- •18. Движение в неинерциальных системах отсчета. Динамика относительного движения. Основное уравнение деинаики относительного движения материальной точки.
- •19. Преобразование Галилея. Экспериментальные факты подтверждающие, теорию относительности.
- •20. Постулаты Эйнштейна. Преобразования Лоренца
- •Следствия из преобразований Лоренца
- •24. Релятивистский импульс
- •25. Релятивистское выражение для энергии.
- •26. Работа и теплота
- •27. Теплоёмкость идеального газа.Теплоёмкость при постоянном объёме и постоянном давлении.Уравнение Майера.
- •28. Теплоёмкости одноатомных и многоатомных газов
- •30. Изоэнтропийный процесс
- •31. Изотермический процесс
- •32. Обратимые и необратимые процессы.Энтропия.
- •33. Второе начало термодинамики.
- •34. Цикл Карно.
- •35.Основное уравнение кинетической теории газов.
- •37. Барометрическая формула. Распределение Больцмана.
- •38. Средняя длина свободного пробега молекул.
- •39. Явления переноса в газах. Диффузия.
- •40. Явление переноса. Элементарная теория диффузии.
- •41. Явления переноса. Теплопроводность газов.
- •42. Явления переноса. Вязкость газа.
- •43. Механические колебания. Свободные гармонические колебания.
- •44. Свободные затухающие колебания.
- •45. Вынужденные механические колебания.
- •46. Явление механического резонанса.
41. Явления переноса. Теплопроводность газов.
В термодинамических неравновесных системах происходят особые необратимые процессы, называемые явлениями переноса, в результате которых осуществляется пространственный перенос массы, импульса, энергии. К явлениям переноса относятся теплопроводность (перенос энергии), диффузия (перенос массы) и внутреннее трение (перенос импульса). Ограничимся одномерными явлениями переноса. Систему отсчета будем выбирать так, чтобы ось х была направлена в сторону в направления переноса.
Теплопроводность возникает при наличии разности температур, вызванной какими-либо внешними причинами. При этом молекулы газа в разных местах его объема имеют разные средние кинетические энергии и хаотическое тепловое движение молекул приводит к направленному переносу внутренней энергии газа. Молекулы, попавшие из нагретых частей объема газа в более холодные, отдают часть своей энергии окружающим частицам. Наоборот, медленнее движущиеся молекулы, попадая из холодных частей объема газа в более нагретые, увеличивают свою энергию за счет соударений с молекулами, имеющими большие скорости и энергии. Перенос энергии в форме теплоты подчиняется закону Фурье:
где jE — плотность теплового потока — величина, которая определяется энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х, λ — теплопроводность, — градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус говорит о том, что во время теплопроводности энергия перемещается в направлении убывания температуры (поэтому знаки jE и – противоположны). Теплопроводность λ равна плотности теплового потока при градиенте температуры, равном единице.
М
ожно
показать, что:
где cv — удельная теплоемкость газа при постоянном объеме (количество теплоты, которое необходимо для нагревания 1 кг газа на 1 К при постоянном объеме), ρ — плотность газа, <ν> — средняя скорость теплового движения молекул, <l> — средняя длина свободного пробега.
42. Явления переноса. Вязкость газа.
Беспорядочность теплового движения молекул газа, непрерывные столкновения между ними приводят к постоянному перемешиванию частиц и изменению их скоростей и энергий. Если в газе существует пространственная неоднородность плотности, температуры или скорости упорядоченного перемещения отдельных слоев газа, то происходит самопроизвольное выравнивание этих неоднородностей. В газе возникают потоки энергии, вещества, а также импульса упорядоченного движения частиц. Эти потоки, характерные для неравновесных состояний газа, являются физической основой особых процессов, объединенных общим названием явлений переноса. К этим явлениям относятся теплопроводность, внутреннее трение и диффузия.
Внутреннее трение (вязкость) связано с возникновением сил трения между слоями газа, перемещающимися параллельно друг другу с различными по модулю скоростями. Со стороны слоя, движущегося быстрее, на более медленно движущийся слой действует ускоряющая сила. Наоборот, медленнее перемещающиеся слои тормозят более быстро движущиеся слои газа. Силы трения, которые при этом возникают, направлены по касательной к поверхности соприкосновения слоев. С молекулярно-кинетической точки зрения причиной вязкости является наложение упорядоченного движения слоев газа с различными скоростями v и хаотического теплового движения молекул.
Рассмотрим два слоя А и В газа, движущихся параллельно друг другу со скоростями v1 и v2. Благодаря тепловому движению молекулы из слоя В переходят в слой А и «переносят» в этот слой импульсы moV2 своего упорядоченного движения. Если v1 > v2, то такие молекулы при столкновениях с частицами слоя А ускоряют свое упорядоченное движение, а молекулы слоя А замедляют. При переходе молекул из быстрее движущегося слоя А в слой В они переносят большие импульсы moV1 и соударения между молекулами приводят к ускорению упорядоченного движения молекул слоя В. В результате этих процессов переноса импульсов молекул между слоями А и В возникают силы трения, направленные, как уже сказано выше, по касательной к поверхности соприкосновения слоев.