
- •Вопрос 36 40
- •Вопрос 1
- •Вопрос 2
- •Вопрос 3
- •Вопрос 4
- •Вопрос 5
- •Вопрос 6
- •Вопрос 7
- •Вопрос 8
- •Вопрос 9
- •Вопрос 10
- •Вопрос 11
- •Вопрос 12
- •Вопрос 13
- •Вопрос 14
- •Вопрос 15
- •Вопрос 16
- •Вопрос 17
- •Вопрос 18
- •Вопрос 19
- •Вопрос 20
- •Вопрос 21
- •Вопрос 22
- •Вопрос 24
- •Вопрос 25
- •Вопрос 27
- •Вопрос 28
- •Вопрос 29
- •Вопрос 30
- •Вопрос 31
- •Вопрос 32
- •Вопрос 33
- •Вопрос 34
- •. Вопрос 35
- •Вопрос 36
- •Вопрос 37
- •Вопрос 38
- •Вопрос 39
- •Вопрос 40-41
- •Вопрос 42
- •Вопрос 43
- •Вопрос 44
- •Вопрос 45
- •1 Год сек. То бит – предел Бреммермана
- •Вопрос 46
- •Вопрос 47
- •Вопрос 48
- •7 Неразрешимых проблем:
- •Вопрос 49
- •§5.2 Полиномиальные и экспоненциальные алгоритмы
- •Вопрос 50
Оглавление
Вопрос 1 3
Вопрос 2 4
Вопрос 3 5
Вопрос 4 6
Вопрос 5 7
Вопрос 6 8
Вопрос 7 9
Вопрос 8 10
Вопрос 9 12
Вопрос 10 13
Вопрос 11 14
Вопрос 12 15
Вопрос 13 16
Вопрос 14 17
Вопрос 15 18
Вопрос 16 19
Вопрос 17 20
Вопрос 18 21
Вопрос 19 22
Вопрос 20 23
Вопрос 21 24
Вопрос 22 25
Вопрос 24 26
Вопрос 25 27
Вопрос 27 29
Вопрос 28 31
Вопрос 29 32
Вопрос 30 33
Вопрос 31 34
Вопрос 32 35
Вопрос 33 36
Вопрос 34 38
. Вопрос 35 39
Вопрос 36 40
Вопрос 37 42
Вопрос 38 43
Вопрос 39 44
Вопрос 40-41 46
Вопрос 42 47
Вопрос 43 48
Вопрос 44 50
Вопрос 45 51
Вопрос 46 52
Вопрос 47 53
Вопрос 48 54
Вопрос 49 55
Вопрос 50 57
Вопрос 1
Применение теории алгоритмов Во всех областях математики, в которых встречаются алгоритмические проблемы. Такие проблемы возникают практически во всех разделах математики. В математической логике для каждой теории формулируется проблема решения множества всех истинных или доводочные утверждений этой теории относительно множества всех ее предложений (теории подразделяются на разрешимые и неразрешимые в зависимости от разрешимости или неразрешимости указанной проблемы); в 1936 А. Черч установил неразрешимость проблемы разрешимости для множества всех истинных предложений логики предикатов, дальнейшие важные результаты в этом направлении принадлежат А.Тарском, А. И. Мальцеву и др.. Неразрешимые алгоритмические проблемы встречаются в алгебре (проблема тождества для полугрупп и, в частности, для групп ; первые примеры полугрупп с неразрешимой проблемой тождества были изобретены в 1947 г. независимо А. А. Марковым и Э. Постом, а пример группы с неразрешимой проблемой тождества - в 1952 г. П. С. Новиковым ); в топологии (проблема гомеоморфии, неразрешимость которой для важного класса случаев была доказана в 1958 г. А. А. Марковым ); в теории чисел (проблема решения 'язности диофантовых уравнений, неразрешимость которого была установлена в 1970 г. Ю. В. Матиясевичем ) и в др.. разделам математики.
Теория алгоритмов тесно связана: 1) с математической логикой, поскольку в терминах алгоритмов может быть изложено одно из центральных понятий математической логики - понятие исчисления (и поэтому, напр., Геделя теорема о неполноте формальных систем может быть получена как следствие теорем А. т.) 2) с основами математики, в которых одно из центральных мест занимает проблема соотношения конструктивного и неконструктивного (в частности, А. т. дает аппарат, необходимый для разработки конструктивного направления в математике); в 1965 г. А. Н. Колмогоров предложил использовать А. т. для обоснования теории информации, 3) с кибернетикой, в которой важное место занимает изучение алгоритмов управления. А. т. образует теоретический фундамент для ряда вопросов вычислительной математики.
Области применения –
внутри математики (логика, алгебра, геометрия)
Связанные с созданием ЭВМ (схемотехника, алгоритмы, цифровые автоматы)
Не математические области (лингвистика, философия, экономика)
Теория алгоритмов – раздел матиматики в котором изучают теоритические возможности эффективных процессов вычислений и их приложений.
Алгоритм – совокупность правил обладающих свойствами –
Массовости
Детерминированности
Результативности
Элементарности
Вопрос 2
Первое правило – при построении алгоритма прежде всего необходимо задать множество объектов, с которыми будет работать алгоритм. Формализованное (закодированное) представление этих объектов носит название данных. Алгоритм приступает к работе с некоторым набором данных, которые называются входными, и в результате своей работы выдает данные, которые называются выходными. Таким образом, алгоритм преобразует входные данные в выходные. Это правило позволяет сразу отделить алгоритмы от “методов” и “способов”. Пока мы не имеем формализованных входных данных, мы не можем построить алгоритм.
Второе правило – для работы алгоритма требуется память. В памяти размещаются входные данные, с которыми алгоритм начинает работать, промежуточные данные и выходные данные, которые являются результатом работы алгоритма. Память является дискретной, т.е. состоящей из отдельных ячеек. Поименованная ячейка памяти носит название переменной. В теории алгоритмов размеры памяти не ограничиваются, т. е. считается, что мы можем предоставить алгоритму любой необходимый для работы объем памяти. В школьной “теории алгоритмов” эти два правила не рассматриваются. В то же время практическая работа с алгоритмами (программирование) начинается именно с реализации этих правил.
В языках программирования распределение памяти осуществляется декларативными операторами (операторами описания переменных). В языке Бейсик не все переменные описываются, обычно описываются только массивы. Но все равно при запуске программы транслятор языка анализирует все идентификаторы в тексте программы и отводит память под соответствующие переменные.
Третье правило – дискретность. Алгоритм строится из отдельных шагов (действий, операций, команд). Множество шагов, из которых составлен алгоритм, конечно.
Четвертое правило – детерменированность. После каждого шага необходимо указывать, какой шаг выполняется следующим, либо давать команду остановки. Пятое правило – сходимость (результативность). Алгоритм должен завершать работу после конечного числа шагов. При этом необходимо указать, что считать результатом работы алгоритма.