Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
23 билета по дет маш .doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
3.59 Mб
Скачать

Билет 12

1. Сварные паянные и клеевые соединения, общая характеристика и область применения. Основные конструкции швов.

Сварные соединения

Сварное соединение – неразъемное. Оно образуется путем сваривания материалов деталей в зоне стыка и не требует никаких вспомогательных элементов. Прочность соединения зависит от однородности и непрерывности материала сварного шва и окружающей его зоны.

В авиастроении сваривают главным образом детали из стали, алюминиевых, титановых и жаростойких сплавов. При изготовлении многих узлов авиационных конструкций используется в основном высокопроизводительная автоматическая сварка. Например, у планера широкофюзеляжного самолета общая длина швов, выполненных автоматической дуговой сваркой, составляет многие сотни метров, а число сварных точек, сделанных сварочными автоматами, достигает нескольких тысяч. Надежность и экономичность сварных соединений обусловливают постоянное повышение объема сварочных работ в авиастроении.

Способы сварки. Электродуговая сварка основана на использовании теплоты электрической дуги для расплавления металла. Для защиты расплавленного металла от вредного действия окружающего воздуха на поверхность электрода наносят толстую защитную обмазку, которая выделяет большое количество шлака и газа, образуя изолирующую среду. Этим обеспечивают повышение качества металла сварного шва, механические свойства которого могут резко ухудшиться под влиянием кислорода и азота воздуха.

Для тех же целей служит флюс, используемый в автоматической сварке. Производительность установок автоматической сварки под слоем флюса в 10…20 раз выше, чем ручной сварки. При автоматической сварке шов формируется в значительной степени за счет расплавленного основного металла, что не только сокращает время, но значительно снижает

расход электродного материала. При этом обеспечивается высокое качество сварного шва.

Электрошлаковая сварка осуществляется за счет теплоты, выделяемой при прохождении тока от электрода к изделию через шлаковую ванну. Такая сварка, предназначенная для соединения деталей большой толщины (до 2 м), позволяет заменять сложные литые детали более простыми сварными. При электрошлаковой сварке расход электроэнергии в 1,5-2 раза, а флюса – в 20-30 раз меньше, чем при электродуговой сварке под слоем флюса.

Газовая сварка состоит в оплавлении кромок свариваемых деталей и присадочного прутка в пламени горящего газа (ацетилена или водорода) в струе кислорода. Достоинство этого метода – отсутствие необходимости в источниках электроэнергии. Газовой сваркой соединяют детали толщиной до 40 мм, изготовленные из стали, чугуна, цветных металлов, а также из пластмасс.

Контактная сварка основана на нагреве стыка деталей при прохождении через них электрического тока. Нагрев может производиться до оплавления стыков или до пластического состояния материала и последующего сдавливания кромок деталей (сварка давлением). Этот вид сварки рекомендуют применять для стыковых соединений деталей, площадь поперечного сечения которых сравнительно невелика.

При точечной контактной сварке соединение образуется не по всей поверхности стыка, а лишь в отдельных точках, к которым подводят электроды сварочной машины.

При шовной контактной сварке узкий непрерывный или прерывистый шов расположен вдоль стыка деталей. Эту сварку выполняют с помощью электродов, имеющих форму дисков, которые катятся в направлении сварки. Точечную и шовную сварку применяют в нахлесточных соединениях для листовых деталей толщиной не более 3-4 мм.

В авиастроении точечную и шовную сварку как наиболее производительную, дешевую и обеспечивающую наименьшее коробление применяют при изготовлении многих деталей планера самолета и двигателя.

В авиационной промышленности применяются и другие методы сварки: сварка в камерах, заполненных инертными газами (аргоном или гелием); ультразвуковая сварка, при которой колебания высокой частоты, разрушающие окисные пленки на поверхности свариваемых деталей, способствуют развитию высоких температур в зоне контакта. Ультразвуковая сварка позволяет в ряде случаев соединять металлы и сплавы, физические свойства которых не позволяли вести сварку обычными методами; сварка электронными и лазерными лучами в вакууме и другие приемы.

Типы сварных швов. В зависимости от расположения соединяемых деталей различают следующие виды сварных швов: стыковые (рис. 5.1, а – г), нахлесточные (рис. 5.1, д), тавровые (рис. 5.1, е) и угловые (рис. 5.1, ж). По расположению относительно линии действия силы различают лобовые (перпендикулярные к линии действия силы) и фланговые (параллельные линии действия силы) швы.

Соединение пайкой и склеиванием

Соединения пайкой. При пайке детали соединяются посредством расплавленного присадочного материала (металла или сплава), называемого припоем. При пайке основной материал не расплавляется как при сварке, так как припой имеет более низкую температуру плавления. Нагрев припоя и детали осуществляют паяльником, газовой горелкой, токами высокой частоты и др.

Пайкой соединяют детали из стали, чугуна, цветных металлов и сплавов, стекла и других материалов. В отличие от сварки пайкой можно соединять детали из разнородных материалов: стальные – с алюминиевыми, стеклянными, резиновыми.

Пайка находит широкое применение в приборостроении, электротехнике, радиотехнике. В настоящее время пайку широко применяют в авиастроении. Наблюдается тенденция перехода от клепаной алюминиевой обшивки к обшивке из тонких стальных листов с сотовым промежуточным заполнением. Эту обшивку изготовляют в виде панелей, паяных в термических печах

Паяные соединения используют также в случае, когда сварка недопустима из-за возможного прожога деталей.

Недостаток паяных соединений – меньшая механическая и термическая прочность по сравнению со сварными соединениями.

Используют припои легкоплавкие (мягкие) с температурой плавления tпл < 300° C и тугоплавкие (твердые) с tпл > 500° C.

Наиболее распространенные мягкие припои (ПОС30, ПОС40, ПОС61 и др., ГОСТ 21930-76) получают на основе олова или свинца. Отличаются незначительными твердостью и прочностью, но допускают пайку большинства металлов и поэтому широко используются для соединения малонагруженных деталей (радиосхем, герметических соединений).

Твердые припои на основе серебра, меди, цинка (ПСр40, ПСр72, ПН25) обладают достаточно высокой прочностью и термостойкостью. В некоторых случаях швы, паянные твердыми припоями, не уступают по прочности основному металлу.

Для растворения и удаления окисных пленок, а также в целях защиты паяного шва от окисления применяют специальные химические вещества – флюсы. Они подразделяются на кислотные (бура, хлористый цинк и др.) и бескислотные (канифоль, нашатырный спирт). Кислотные флюсы вызывают коррозию металлов, поэтому детали после пайки тщательно промывают.

Пайкой выполняют соединение листов встык (рис. 5.11, а) и внахлестку (рис. 5.11, б), соединение труб (рис. 5.11, в). Для проникания припоя между деталями оставляют зазор (0,05-0,15 мм).

Рис. 5.11. Соединения пайкой

Расчет прочности паяных соединений аналогичен расчету сварных. Для стыковых соединений

σ = F/(δb) ≤ [σ'],                                      (5.5)

для нахлесточных соединений

τ = F/(bl) ≤ [τ'],                                        (5.6)

где [σ'] и [τ'] – допускаемые напряжения в паяном шве.

При соединении стальных деталей прочность материала деталей обычно больше прочности материала шва. В подобных случаях условие равнопрочности можно обеспечить только для нахлесточных соединений. Значение нахлестки по условию равнопрочности (см. рис. 5.11, б)

l = [σ]δ / [τ'],                                          (5.7)

где [σ] – допускаемое напряжение для материала деталей.

Соединение склеиванием. Склеивание – один из наиболее прогрессивных методов соединения деталей, получивший в последнее время широкое распространение после того, как были разработаны высокопрочные, термо- и водостойкие клеи, создано технологическое оборудование и проведены всесторонние исследования свойства клеевых соединений.

Имеются клеевые составы с избирательной адгезией к каким-либо определенным материалам – это специальные клеи (например, резиновые); с высокой адгезией к различным материалам (например, к металлам, керамике, дереву, пластмассам и др.) – это универсальные клеи.

В процессе склеивания выполняют ряд последовательных операций: подготовку поверхностей деталей, нанесение клея, сборку соединения, выдержку при соответствующих давлении и температуре. Подготовка поверхностей обычно заключается в их взаимной подгонке, образовании шероховатости путем зачистки наждачной шкуркой или пескоструйным аппаратом, удалении пыли и обезжиривании с помощью органических растворителей. Шероховатость увеличивает поверхность склеивания. Сравнительно длительная выдержка, необходимая для полимеризации, является одним из недостатков клеевых соединений.

Прочность клеевого соединения в значительной степени зависит от толщины слоя клея. Рекомендуемые значения 0,05…0,15 мм. Толщина слоя клея зависит от его вязкости и давления при склеивании. Клеевые соединения лучше работают на сдвиг, хуже на отрыв. Поэтому предпочтительны нахлесточные соединения. Для повышения прочности применяют комбинацию клеевого соединения с резьбовым, сварным или заклепочным.

В авиастроении склеивание применяют для соединения листов обшивки самолетов и вертолетов с элементами жесткости (стрингерами, нервюрами и др.), при изготовлении лопастей вертолетов, элеронов, рулей, закрылков, щитков, крышек люков, панелей полов.

Расчеты на прочность производят по тем же формулам, что и для паяных соединений. Качество клеевого соединения характеризуется не только его прочностью, но также водостойкостью, теплостойкостью и другими показателями.

2. Оценка прочности деталей машин по коэффициенту запаса прочности (по напряжению, нагрузке, долговечности).

При статических напряжениях. При статическом нагруже- нии * деталей (когда число циклов за весь период работы УУ^ ^ 103), изготовленных из пластичных материалов, концентрация напряжений не снижает несущей способности детали, так как местные пластические деформации способствуют перераспреде­лению и выравниванию напряжений по сечению. В этом случае расчеты на прочность выполняют по номинальным напряжениям σ или τ.

Так же рассчитывают детали из хрупких материалов в свя­зи с их пониженной чувствительностью к концентрации напря­жений.

Для малопластичных материалов (легированные стали и др.) расчет ведут по наибольшим местным напряжениям, так как концентрация напряжений снижает прочность детали (см. рис. 0.5).

На основании сказанного расчетные коэффициен­ты запаса прочности 5, например, по нормальным на­пряжениям определяют по формулам: для пластичных материалов

 

где στ и σ„ — предел текучести и предел прочности материала; Ка — эффективный коэффициент концентрации напряжений (см. табл. 0.2); [sT] и [s„] — допускаемые коэффициенты запаса прочности по пределу текучести и пределу прочности.

Выбор значения [s] является весьма ответственной задачей, поскольку необходимо обеспечить требуемую надежность без завышения массы и габаритов детали. Ориентировочно рекомен­дуют:

для углеродистой стали [sT]= 1,3...1,6; для серого чугуна [sB]=2,1...2,4.

При переменных напряжениях. Для оценки сопротивления усталости деталей необходимо учитывать их конструктивные формы, размеры, состояние поверхности и другие факторы.

При действии переменных напряжений с амплитудой цикла σα, То расчетные коэффициенты запаса прочности определяют по формулам:

где sa и sT — коэффициенты, определяемые по формулам (0.10) и (0.11).

В случае переменных напряжений для стальных деталей реко­мендуют принимать:

при высокой достоверности расчета [s]= 1,3...1,5; при менее точной расчетной схеме [s]= 1,6...2,1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]