
- •1. Понятие заготовки в машиностроении.
- •2. Основные факторы, определяющие выбор заготовки.
- •3. Технологичность заготовок.
- •4. Методики выбора машиностроительной заготовки.
- •5. Основные литейные материалы.
- •6. Литейные свойства сплавов.
- •7. Литьё в песчано-глинистые формы: сущность технологического процесса, технологические возможности, область применения и оснастка.
- •9. Литьё в оболочковые формы: сущность технологического процесса, технологические возможности, область применения и оснастка.
- •1 0. Литьё по выплавляемым моделям: сущность технологического процесса, технологические возможности, область применения и оснастка.
- •11. Литьё в металлические формы (кокиль): сущность технологического процесса, технологические возможности, область применения и оснастка.
- •12. Центробежное литьё: сущность технологического процесса, технологические возможности, область применения и оснастка.
- •13.Литье под давлением.
- •14.Электрошлаковое литье. Рис
- •15.Непрерывное литье
- •16.Литье выжиманием
- •17. Штамповка жидкого металла (без схемы)
- •18.Проектирование литых заготовок
- •19.Правило выбора баз и простановка размеров
- •20.Оформление чертежа литой заготовки
- •21. Технологические возможности обработки металлов давлением
- •22. Основные методы получения заготовок пластическим деформированием
- •23.Основные кузнечные операции
- •24. Исходные материалы для кузнечного производства заготовок
- •26. Виды деформаций при пластической обработке металлов
- •27. Механические характеристики деформируемых сталей и сплавов
- •28. Температурный интервал горячей обработки давлением
- •29.Свободная ковка
- •30. Основные дефекты свободной ковки
- •31. Горячая объемная штамповка (гош)
- •32. Штамповка на молотах
- •34.Штамповка на винтовых прессах
- •35. Штамповка на гидравлических прессах
- •36.Штамповка на гкм
- •38.Проектирование поковок
- •40. Оформление чертежа поковки
- •41.Холодная объемная штамповка
26. Виды деформаций при пластической обработке металлов
Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации. При неизменной нагрузке, приложенной к телу, деформация изменяется со временем; это явление называется ползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и упругое последействие. Одной из теорий, объясняющих механизм пластической деформации, является теория дислокаций в кристаллах.
Основным признаком, по которому в теории ОМД производится деление пластической деформации на виды, является температура. Она определяет соотношение процессов упрочнения и разупрочнения, происходящих параллельно в деформируемом теле.
Совокупность явлений, связанных с повышением прочностных свойств металлов в процессе пластической деформации, называется деформационным упрочнением или наклепом.
Если в ходе пластической деформации прочностные характеристики металла понижаются, то речь идет о так называемом разупрочнении металла.
Упрочняющие и разупрочняющие процессы протекают во времени с определенными скоростями, обусловленными условиями деформации и природой деформируемого металла. В зависимости от того, какой из про-цессов является преобладающим, результаты деформации будут различны.
Существует несколько вариантов разделения пластической деформации на виды, из которых на практике наибольшее распространение получил тот, по которому различают только горячую и холодную деформации.
Пластическую деформацию металлов называют горячей, если она осуществляется при температуре, равной или выше температуры начала рекристаллизации (Т Трекр). Температура Т берется в Кельвинах. Рекристаллизация (Трекр = 0,4 Тпл), т.е. процесс роста новых недеформированных зерен, вызывающий восстановление всех первоначальных физико-механических характеристик металла, успевает пройти полностью, искажения кристаллической решетки отсутствуют.
При холодной деформации рекристаллизация и возврат полностью отсутствуют и деформированный металл имеет все признаки упрочнения. Температурный интервал холодной деформации расположен ниже температур начала рекристаллизации (Т < Трекр). В результате холодной деформации сопротивление металла деформации увеличивается, пластичность уменьшается. Используется она обычно на конечных стадиях получения изделий для обеспечения точности размеров, требуемого уровня свойств и высокого качества поверхности.
Согласно приведенной классификации холодная и горячая деформации не связаны с конкретными температурами нагрева, а зависят только от протекания процессов упрочнения и разупрочнения. Определить вид деформации можно по заданной температуре обработки металла