
- •1. Технология как источник неограниченного развития производства и общества
- •2. Технология и экономика производства, их функции и взаимосвязь в единой производственной деятельности
- •3. Производственный процесс как объект, изучаемый технологией и экономикой.
- •4. Понятие и предмет технологии. Анализ разновидностей технологии и их характеристика.
- •5 Понятие техн процесса
- •6. Структура и организация технол процесса
- •7. Затраты труда в ходе осущ технол процессов. Понятие идеальной технологии.
- •8. Параметры и важнейшие технико-экоиом показатели технол процесса,
- •9. Материальный и энергетический баланс техн процесса
- •10. Технол развитие как ключевой фактор соверш пром произв.
- •12. Рационалистическое развитие и его закон.
- •14. Эволюционное развитие техн процессов и его закономерности
- •15. Революц развитие техн процессов и его закономерности
- •16. Общие принципы классификации технол процессов.
- •17 Физ процессы в технологии.
- •18. Хим процессы
- •20. Понятие системы техн процессов. Исторические этапы развития систем техн процессов
- •21. Классификация техн систем производства, закономерности их формирования и функционирования.
- •22. Закономерности развития и оптимизация технологических систем
- •23. Понятие технических систем, законы строения и развития технических систем
- •27. Технол особенности социально-потреб комплекса
- •Технол особенности химико-лесного комплекса
- •29 Технологические особенности агропромышленного комплекса
- •30 Технологические особенности строительного комплекса
- •31 Технолгические особенности коммунального комплекса. Техн особенности соц-культурного комплекса
- •26 Технологические особенности машиностроительного комплекса
- •51 Основные этапы технологического развития общества. Характерные признаки и предпосылки технологического прогресса.
- •52Особенности современного этапа технологического развития общества.
- •53 Основные направления научно-технологического развития промышленного производства.
- •54 Общая характеристика изменений в окружающей среде, связанных с производством материальных благ.
- •55 Причины образования производственных отходов. Общая характеристика вариантов устранения загрязнения окружающей среды производственными отходами.
- •56 Понятие о безотходной технологии и условиях ее организации.
- •57 Комплексная переработка сырья и технологические методы ее реализации.
- •64Основы технологии производства композиционных материалов. Основы технологии порошковой металлургии.
- •66Основы лазерной технологии и области ее применения.
- •67 Основы ультразвуковой технологии и области ее применения.
- •68Основы мембранной технологии и области ее применения.
- •69Основы радиационно-химической технологии. Основы плазменной и элионной технологии.
- •70Основы современной биотехнологии и направления ее развития.
- •71 Общие сведения о нанотехнологии.
- •58.Понятие о комплексной автоматизации производствах и технологических принципах ее реализации.
- •59.Основы гибкой автоматизированной технологии.
- •60.Основы робототехники и робототехнологии. Принципы роботизации современного производства.
- •61.Основы роторной технологии обработки изделий.
- •63.Основы информационной технологии в управленческой и проектно-конструкторской деятельности.
- •48Общие сведения о пищевой промышленности, ее продукции, технологических особенностях и направлениях развития.
- •49 Важней технологические процессы пищевой промышленности (механические, гидромеханические, массообмекные, биологические, химические, термическая обработка, консервирование).
- •50.Технологические основы важнейших пищевых производств (мукомольного, свеклосахарного, производства кисломолочных продуктов, этанола).
- •32.Общие сведения о машинах, машиностроении, технологической структуре и технологических особенностях машиностроительного производства и направлениях его развития.
- •33.Важнейшие технологические процессы заготовительного производства (основы технологии обработки материалов давлением и литейного производства).
- •34.Важнейшие технологические процессы обрабатывающего производства в машиностроении (основы технологии обработки металлов резанием, термической и химико-термической обработки).
- •35. Важнейшие технологические процессы сборочного производства (основы технологии получения разъемных и неразъемных соединений).
- •36Общие сведения о легкой промышленности, ее продукции, технологической структуре, технологических особенностях и направлениях развития.
- •37 Общие сведения о текстильных материалах. Основы технологии производства текстильных волокон и нитей (натуральных и химических). Основные этапы производства пряжи.
- •38 Основы технологии ткацкого производства. Основы технологии трикотажного производства. Основы технологии нетканых текстильных материалов.
- •39.Основы технологии производства швейных изделий. Основы технологии производства пушно-меховых изделий.
- •45.Общие сведения о капитальном строительстве и производстве строительных материалов и изделий, технологических особенностях и
- •42. Основы технологии минеральных удобрений (азотных, фосфорных, калийных).
- •43. Основы технологии переработки топлив (прямая перегонка нефти, крекинг нефтепродуктов).
- •40 Основы технологии производства обуви
- •41.Общие сведения о химической технологии, химической и нефтехимической промышленности, ее продукции, технологических особенностях и направлениях развития.
- •44.Основы технологии производства и переработки полимерных материалов, производства изделий из пластмасс.
- •47.Основы технологии производства древесных строительных материалов и изделий.
- •46 Основы технологии важнейших строительных материалов (керамики и изделий на ее основе, стекла и стеклянных изделий, бетона и железобетона).
57 Комплексная переработка сырья и технологические методы ее реализации.
Комплексная переработка сырья важнейшая экологическая и экономическая задача, основа создания безотходных промышленных производств. Отходы производства — это неиспользованная или недоиспользованная часть сырья.
Низкий уровень вторичного использования металлов, бумаги, пластмасс, текстиля, и из первичного сырья не полностью извлекаются ценные компоненты.Разработка экологически безвредных технологических процессов — одна из глобальных задач научно-технологического развития производства, для человечества.Разработка эффективных методов очистки стоков и выбросов, создание замкнутых оборотных циклов.Применение адсорбционной и электрохимической очистки, озонирования, электрокоагуляции, электродиализа, гиперфильтрации, радиационной очистки, мембранных методов. Важным для реализации безотходных технологий является:1)создание высокоэффективных методов и устройств для очистки отходящих промышленных газов от аэрозолей, пыли, газо- и парообразных примесей 2) использование фильтров, электрофильтров, мокрых пылеуловителей (скрубберов). 3)применение : абсорбции жидкими поглотителями, адсорбции твердыми веществами, химического разложения или превращения в другое, менее вредное для окружающей среды соединение.
Концепция безотходной технологии включает в себя все вышеперечисленные направления, реализация которых в производстве зависит от технологических особенностей и уровня организации самого производства и направлена на решение важнейших задач снижения поступления вредных веществ в окружающую среду.
Национальная стратегия устойчивого социально-экономического развития Республики Беларусь на период до 2020 года определила расширение международного сотрудничества в области взаимоотношений человека и природной среды, охраны окружающей среды в качестве одного из перспективных направлений осуществления экологической политики.
64Основы технологии производства композиционных материалов. Основы технологии порошковой металлургии.
Композиционные материалы (КМ), или композиты искусственно созданные материалы, состоящие из двух или более разнородных и нерастворимых друг в друге компонентов (фаз), соединяемых между собой физико-химическими связями.
Большое значение замены композиционными материалами металлов и других конструкционных материалов состоит в том, что их можно создавать с различными свойствами, причем как равными, так и неравными во всех направлениях материала. Создание изделий из композитов является примером единства конструкции и технологии, поскольку материал, спроектированный конструктором, образуется одновременно с изделием при его изготовлении, и свойства КМ в значительной мере зависят от параметров технологического процесса.
Свойства композиционных материалов зависят от свойств их компонентов. Одним из этих компонентов является арматура или наполнитель, а вторым — связывающая их матрица. В качестве матрицы в композиционных материалах используют эпоксидные, кремнийорганические, полиэфирные и другие смолы, а также алюминий, магний, титан, никель, жаропрочные сплавы, керамику, углерод различной модификации. Тип материала матрицы определяет общее название композиционного материала. Например, композиционные материалы с полимерной матрицей называют полимерными (ПКМ), с металлической — металлическими (МКМ), с углеродной — углеродными (УКМ) и т.д.
В заключение следует отметить, что области применения композитов практически неограниченны, и в ближайшие годы надо ждать значительного расширения их использования.
Порошковая металлургия включает производство металлических порошков, а также изделий из них или их смесей и композиций с неметаллами.
С помощью технологии порошковой металлургии решаются две задачи: 1) изготовление материалов и изделий с обычными составами, структурой и свойствами, но при значительно более выгодных экономических показателях их производства; 2) получение материалов и изделий с особыми свойствами, составом, структурой, которые недостижимы при других способах производства.
Технологический процесс порошковой металлургии состоит из трех стадий:
1) производство металлических порошков;2) придание порошкообразному материалу требуемой формы (формование);3)спекание заготовки при повышенных температурах.
Часто спеченные детали подвергают дополнительной обработке для улучшения их свойств.
65 Электрофизические и электрохимические методы обработки изделий. Электрическими методами обработки называют группу новых способов, применяемых для целенаправленного удаления материала с обрабатываемой поверхности с целью формообразования, разрезания и соединения деталей и изменения физико-механических свойств поверхности. Они осуществляются с помощью электрической энергии, вводимой либо непосредственно в зону обработки, либо при предварительном специальном преобразовании ее вне рабочей зоны в световую, акустическую, магнитную и другую.
по характеру воздействия электрического тока на предмет обработки все электрические методы обработки условно подразделяют на две большие группы:
1)электрофизические (ЭФ), основанные на тепловом или механическом действии электрического тока;2)электрохимические (ЭХ), основанные на химическом действии электрического тока.
Одним из наиболее распространенных электрофизических методов является электроэрозионная обработка , основанная на эффекте расплавления и испарения микропорций материала под тепловым воздействием импульсов электрической энергии, которая выделяется в канале электроискрового заряда между поверхностью обрабатываемой детали и электродом-инструментом, погруженным в жидкую непроводящую среду.Электрохимические методы обработки основаны на применении электролитов — жидкостей, способных проводить электрический ток. Прохождение электрического тока через электролит сопровождается переносом массы вещества, что и используется в электрохимических процессах.
Достоинствами электрофизических и электрохимических методов обработки являются:практическая независимость скорости и качества обработки от физико-механических свойств обрабатываемых материалов;2)отсутствие потребности в специальных инструментах или абразивах более твердых, чем обрабатываемый материал;3) значительное сокращение расхода материалов 4)высокая точность изготовления деталей;5) улучшение условий труда и сохранение окружающей среды.К недостаткам электрических методов следует отнести низкую скорость обработки и высокую энергоемкость.