
- •Основные понятия и исходные положения теплотехники.
- •Основные понятия технической термодинамики.
- •Термодинамические параметры состояния.
- •Уравнение состояния идеальных и реальных газов.
- •Внутренняя энергия, работа расширения, теплота процесса.
- •8) Прямой цикл Карно.
- •9) Обратный цикл Карно. Второй закон термодинамики.
- •10) Термодинамические процессы идеальных газов.
- •11) Процесс парообразования.
- •12) Термодинамические процессы реальных газов.
- •14) Сопла и диффузоры.
- •15) Дросселирование газов и паров.
- •17) Циклы двс.
- •18) Цикл газотурбинной установки.
- •19) Циклы паротурбинных установок.
- •20) Способы передачи теплоты.
- •21) Теплопроводность.
- •22) Основной закон конвективного теплообмена. Понятие о теории подобия.
- •23) Теплоотдача при вынужденном движении теплоносителя.
- •24) Теплоотдача при естественной конвекции.
- •1. Движение теплоносителя по прямолинейным трубам и каналам:
- •26) Теплообмен излучением системы тел в прозрачной среде.
- •27) Использование экранов для защиты от излучения.
- •28) Перенос лучистой энергии в поглощающей и излучающей среде.
- •29) Теплопередача.
- •30) Интенсификация теплопередачи и тепловая изоляция.
- •31) Теплообменные аппараты: их виды, принцип работы и области применения.
- •32) Виды теплового расчета теплообменников.
- •33) Виды и характеристика топлива.
- •34) Расчеты процессов горения твердого, жидкого и газообразного топлива.
- •36) Форсунки и топки для жидкого топлива.
- •37) Особенности сжигания твердых топлив.
- •38) Паровые турбины.
- •39) Газотурбинные установки.
- •40) Двигатели внутреннего сгорания.
- •41) Технико-экономические показатели двс.
- •42) Тепловой баланс двигателя.
- •43) Тепловые электрические станции: их разновидности и технико-экономические показатели.
- •44) Атомные электрические станции.
- •45) Альтернативные источники получения энергии.
14) Сопла и диффузоры.
В гидроаэромеханике, участок проточного канала (трубопровода), в к-ром происходит торможение потока жидкости или газа. Поперечное сечение Д. может быть круглым, прямоугольным, кольцевым, эллиптическим, а также несимметричным. По своему назначению и геом. форме Д.— устройство, обратное соплу. Вследствие падения ср. скорости v давление р в направлении течения растёт (см. БЕРНУЛЛИ УРАВНЕНИЕ) и кинетич. энергия потока частично преобразуется в потенциальную. В отличие от сопла, преобразование энергии в Д. сопровождается заметным возрастанием энтропии и уменьшением полного давления. Разность полных давлений на входе и выходе Д. характеризует его гидравлич. сопротивление и наз. потерями. Потерянная часть кинетич. энергии потока затрачивается на образование вихрей, работу против сил трения и необратимо переходит в теплоту. Движение жидкости (газа) в направлении роста давления в потоке, т. е. существование положит. градиента давления в направлении течения,— осн. отличит. свойство Д.
В случае несжимаемой жидкости, а также при дозвуковой скорости газа v1 перед входом в Д. (v1а) он имеет форму сходящегося или цилиндрич. канала, в к-ром после торможения ср. скорость становится дозвуковой. Дальнейшее торможение дозвук. скорости осуществляется в расходящемся дозвук. Д., присоединённом к сверхзвук. Д. (рис. 2).
Вязкость оказывает решающее влияние на течение в Д. В пограничном слое скорость под действием вязкости быстро убывает, обращаясь в нуль на стенке Д. Кинетич. энергия в пограничном слое меньше, чем в остальной части потока, а статич. давление в данном поперечном сечении почти постоянно. Т. к. средняя скорость по длине Д. падает, а давление растёт, то в сечении, расположенном на нек-ром расстоянии от входа в Д.
Применяются, когда необходимо затормозить поток жидкости или газа с наименьшими потерями. Они используются в газо-, нефте- и воздухопроводах, в гидравлич. магистралях, в турбомашинах всех типов, в воздушно-реактивных двигателях, эжекторах, МГД-генераторах, аэродинамических трубах, стендах для испытаний ракетных двигателей и др.
Теория течения в Д. недостаточно разработана, его осн. хар-ки и оптимальную форму определяют на основании результатов эксперим. исследований и их теоретич. обобщения.
Сопла незаменимы при раздаче воздуха в больших помещениях, где рабочая зона значительно удалена от воздуховода, таких как стадионы, большие залы различного назначения. Коническая форма корпуса сопла, ускоряет воздушный поток, формирует струю воздуха и выбрасывает ее на расстояние до 30 метров. Встроенный опциональный диск с радиальными направляющими, разделяет воздушную струю, быстро снижает разность температур и скоростей, увеличивая перемешивание. Некоторые серии сопел эффективно используются для предотвращения появления конденсата на остеклении в бассейнах и общественных зданиях, имеющих большие площади остекления.
15) Дросселирование газов и паров.
В трубопроводах для регулирования параметров и расхода газа или пара часто устанавливают задвижки, клапаны, вентили, приводящие к сужению газового потока.
При входе в более узкое отверстие клапана, или как часто называют дросселя, поток пара постепенно уплотняется и приобретает большую скорость. В потоке происходит перераспределение количества энергии. Необратимый процесс неравновесного расширения газа от большего давления к меньшему, происходящий без отдачи работы во вне, называется дросселированием или мятием пара.
Процесс дросселирования протекает без теплообмена с окружающей средой, т. е. адиабатно. В узком отверстии дросселя (например, диафрагмы) скорость пара при постепенном сужении потока достигает максимальной величины. При выходе из узкого сечения скорость его вновь уменьшается и достигает почти первоначального значения. Давление пара, определяемое величиной потенциальной энергии, при прохождении через дроссель падает от pi до Р2 благодаря увеличению кинетической энергии. Давление пара за дросселем вследствие последующего уменьшения кинетической энергии будет возрастать, но пар частично затратит свою энергию на преодоление трения и завихрений потока, а выделившаяся при этом теплота компенсирует падение энтальпии пара в узком сечении дросселя; энтальпия пара до и после дросселя не изменится.
Приведенные рассуждения подтверждаются преобразованием уравнения энергетического баланса.
Конечное состояние пара при дросселировании зависит от его начальных параметров и отношения площади отверстия дросселя к площади сечения трубопровода. Чем меньше отношение этих площадей, тем больше перепад давлений. Пары ведут себя при дросселировании но-разному: влажный пар давлением 4,0— 5,0 МПа при дросселировании может быть превращен в сухой насыщенный или даже перегретый. При дросселировании перегретого пара может произойти снижение его перегрева или переход в насыщенное и вновь перегретое состояние. Все эти превращения легко установить, пользуясь графическим методом расчета с помощью is-диаграммы.
Дросселированием пользуются при регулировании мощности в паровых двигателях, для снижения давления пара в паропроводах в случае использования его движущей силы.
На процессе дросселирования основан принцип работы диафрагм как приборов для измерения расхода газа или пара, проходящих через трубопровод.
16) Термодинамический анализ процессов в компрессорах.
Условия работы тепловых машин.
1-е:
Тепловая машина всегда работает в определенном перепаде температур. (Это значит, что для работы такой машины необходим иметь по крайней мере 1 источник теплоты, и 1 приемник теплоты).
2-е:
Любая тепловая машина должна работать циклично, т.е. рабочее тело, совершая за определенный промежуток времени ряд процессов расширения и сжатия, должно возвращаться в исходное состояние.
Циклы паросиловых установок
Как было сказано выше, реакторную установку можно представить в виде тепловой машины, в которой осуществляется некий термодинамический цикл.
Теоретическим циклом современной паросиловой установки является цикл Ренкина.
Пароводяная смесь образовавшаяся в результате передачи тепловой энергии воде в активной зоне поступает в Барабан - сепаратор где происходит разделение пара и воды. Пар направляется в паровую турбину, где расширяясь адиабатно, совершает работу. Из турбины отработавший пар направляется в конденсатор. Там происходит отдача теплоты охлаждающей воде, проходящей через конденсатор. Вследствие этого пар полностью конденсируется. Полученный конденсат непрерывно засасывается насосом из конденсатора, сжимается и направляется вновь в барабан сепаратор.
Конденсатор играет двоякую роль в установке.
Во-первых, он имеет паровое и водяное пространство, разделенные поверхностью, через которую происходит теплообмен между отработавшим паром и охлаждающей водой. Поэтому конденсат пара может быть использован в качестве идеальной воды, не содержащей растворенных солей.
Во-вторых, в конденсаторе вследствие резкого уменьшения удельного объема пара при его превращении в капельножидкое состояние наступает вакуум, который будучи поддерживаемым в течение всего времени работы установки, позволяет пару расширяться в турбине еще на одну атмосферу (Рк » 0,04-0,06 бар) и совершать за счет этого дополнительную работу.