
- •Основные понятия и исходные положения теплотехники.
- •Основные понятия технической термодинамики.
- •Термодинамические параметры состояния.
- •Уравнение состояния идеальных и реальных газов.
- •Внутренняя энергия, работа расширения, теплота процесса.
- •8) Прямой цикл Карно.
- •9) Обратный цикл Карно. Второй закон термодинамики.
- •10) Термодинамические процессы идеальных газов.
- •11) Процесс парообразования.
- •12) Термодинамические процессы реальных газов.
- •14) Сопла и диффузоры.
- •15) Дросселирование газов и паров.
- •17) Циклы двс.
- •18) Цикл газотурбинной установки.
- •19) Циклы паротурбинных установок.
- •20) Способы передачи теплоты.
- •21) Теплопроводность.
- •22) Основной закон конвективного теплообмена. Понятие о теории подобия.
- •23) Теплоотдача при вынужденном движении теплоносителя.
- •24) Теплоотдача при естественной конвекции.
- •1. Движение теплоносителя по прямолинейным трубам и каналам:
- •26) Теплообмен излучением системы тел в прозрачной среде.
- •27) Использование экранов для защиты от излучения.
- •28) Перенос лучистой энергии в поглощающей и излучающей среде.
- •29) Теплопередача.
- •30) Интенсификация теплопередачи и тепловая изоляция.
- •31) Теплообменные аппараты: их виды, принцип работы и области применения.
- •32) Виды теплового расчета теплообменников.
- •33) Виды и характеристика топлива.
- •34) Расчеты процессов горения твердого, жидкого и газообразного топлива.
- •36) Форсунки и топки для жидкого топлива.
- •37) Особенности сжигания твердых топлив.
- •38) Паровые турбины.
- •39) Газотурбинные установки.
- •40) Двигатели внутреннего сгорания.
- •41) Технико-экономические показатели двс.
- •42) Тепловой баланс двигателя.
- •43) Тепловые электрические станции: их разновидности и технико-экономические показатели.
- •44) Атомные электрические станции.
- •45) Альтернативные источники получения энергии.
38) Паровые турбины.
Паровая турбина (фр. turbine от лат. turbo вихрь, вращение) — тепловой двигатель непрерывного действия, в лопаточном аппарате которого потенциальная энергия сжатого и нагретого водяного пара преобразуется в кинетическую, которая в свою очередь совершает механическую работу на валу.
Поток водяного пара поступает через направляющие аппараты на криволинейные лопатки, закрепленные по окружности ротора, и, воздействуя на них, приводит ротор во вращение.
Паровая турбина является одним из элементов паротурбинной установки (ПТУ). Отдельные типы паровых турбин также предназначены для обеспечения потребителей тепла тепловой энергией.
Паровая турбина и электрогенератор составляют турбоагрегат.
Основные конструкции паровых турбин
Модель одной ступени паровой турбины
Паровая турбина состоит из двух основных частей. Ротор с лопатками — подвижная часть турбины. Статор с соплами — неподвижная часть.
По направлению движения потока пара различают аксиальные паровые турбины, у которых поток пара движется вдоль оси турбины, и радиальные, направление потока пара в которых перпендикулярно, а рабочие лопатки расположены параллельно оси вращения. В России и странах СНГ используются только аксиальные паровые турбины.[источник не указан 469 дней]
По числу цилиндров турбины подразделяют на одноцилиндровые и двух—трёх-, четырёх-пятицилиндровые. Многоцилиндровая турбина позволяет использовать бо́льшие располагаемые тепловые перепады энтальпии, разместив большое число ступеней давления, применить высококачественные материалы в частях высокого давления и раздвоение потока пара в частях среднего и низкого давления. Такая турбина получается более дорогой, тяжёлой и сложной. Поэтому многокорпусные турбины используются в мощных паротурбинных установках.
По числу валов различают одновальные, двувальные, реже трёхвальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором). Расположение валов может быть как коаксиальным, так и параллельным с независимым расположением осей валов.
Неподвижную часть — корпус (статор) — выполняют разъёмной в горизонтальной плоскости для возможности выемки или монтажа ротора. В корпусе имеются выточки для установки диафрагм, разъём которых совпадает с плоскостью разъёма корпуса турбины. По периферии диафрагм размещены сопловые каналы (решётки), образованные криволинейными лопатками, залитыми в тело диафрагм или приваренными к нему.
В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек пара наружу (со стороны высокого давления) и засасывания воздуха в корпус (со стороны низкого). Уплотнения устанавливают в местах прохода ротора сквозь диафрагмы во избежание перетечек пара из ступени в ступень в обход сопел.
На переднем конце вала устанавливается предельный регулятор (регулятор безопасности), автоматически останавливающий турбину при увеличении частоты вращения на 10—12 % сверх номинальной.
Характеристика основных параметров номинальных значений
Номинальная мощность турбины — наибольшая мощность, которую турбина должна длительно развивать на зажимах электрогенератора, при нормальных величинах основных параметров или при изменении их в пределах, оговоренных отраслевыми и государственными стандартами. Турбина с регулируемым отбором пара может развивать мощность выше номинальной, если это соответствует условиям прочности её деталей.
Экономическая мощность турбины — мощность, при которой турбина работает с наибольшей экономичностью. В зависимости от параметров свежего пара и назначения турбины номинальная мощность может быть равна экономической или более её на 10-25 %.
Номинальная температура регенеративного подогрева питательной воды — температура питательной воды за последним по ходу воды подогревателем.
Номинальная температура охлаждающей воды — температура охлаждающей воды при входе в конденсатор.