Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основные понятия и исходные положения теплотехн...docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
136.4 Кб
Скачать

21) Теплопроводность.

Теплопроводность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела (атомами, молекулами, электронами и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Иногда теплопроводностью называется также количественная характеристика способности конкретного вещества проводить тепло. Численно эта характеристика равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании их температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, — коэффициент теплопроводности (иногда называемый просто теплопроводностью), — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой).

где — полная мощность тепловых потерь, — площадь сечения параллелепипеда, — перепад температур граней, — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

22) Основной закон конвективного теплообмена. Понятие о теории подобия.

Конвективный теплообмен

Понятие конвективного теплообмена охватывает процесс теплообмена при движении жидкости или газа. При этом перенос теплоты осуществляется одновременно конвекцией и теплопроводностью. Под конвекцией теплоты понимают перенос теплоты при перемещении макрочастиц жидкости или газа в пространстве из области с одной температурой в область с другой температурой. Конвекция возможна только в подвижной среде, здесь перенос теплоты неразрывно связан с переносом самой среды.

Если в единицу времени через единицу поверхности нормально к ней проходит масса жидкости , где - скорость жидкости, а - ее плотность, то вместе с ней переносится энтальпия i:

Конвекция теплоты всегда сопровождается теплопроводностью, т.к. при движении жидкости или газа неизбежно происходит соприкосновение отдельных частиц среды, имеющих различные температуры. В результате конвективный теплообмен описывается уравнением

Здесь является локальным (местным) значением плотности теплового потока за счет конвективного теплообмена. Первое слагаемое в правой части уравнения (2) описывает перенос теплоты теплопроводностью, второе – конвекцией.

Конвективный теплообмен между потоками жидкости или газа и поверхностью соприкасающегося с ними тела называется конвективной теплоотдачей (теплоотдачей).

согласно которого тепловой поток от жидкости к элементу поверхности соприкасающегося тела (или от к жидкости) прямо пропорционален и разности температур , где - температура поверхности тела, - температура жидкости или газа. Разность температур называют температурным напором.

Коэффициент пропорциональности , входящий в уравнение (3), называется коэффициентом теплоотдачи. Он учитывает конкретные условия процесса теплоотдачи, влияющие на его интенсивность.

Согласно уравнению (3)

Это тождество следует рассматривать как определение коэффициента теплоотдачи, который измеряется в .

В общем случае коэффициент теплоотдачи переменен по поверхности F. Он зависит от большого количества факторов и является функцией формы и размеров тела, режима движения, скорости и температуры жидкости, физических параметров жидкости и других величин. По-разному протекает процесс теплоотдачи в зависимости от природы возникновения движения жидкости.

Чтобы привести жидкость в движение, к ней необходимо приложить силу. Силы, действующие на жидкость, можно разделить на массовые (или объемные) и поверхностные. Массовыми называют силы, приложенные ко всем частицам жидкости и обусловленные внешними силовыми полями (например, сила тяжести). Поверхностные силы возникают вследствие действия окружающей жидкости или твердых тел; они приложены к поверхности контрольного объема жидкости. Такими силами являются силы внешнего давления и силы трения.

Различают свободную и вынужденную конвекцию. В случае свободной конвекции движение в рассматриваемом объеме жидкости возникает за счет неоднородности в нем массовых сил. Например, если жидкость с неоднородным распределением температуры, и, как следствие, с неоднородным распределением плотности находится в поле земного тяготения, то в ней возникает свободное гравитационное движение.

Вынужденное движение рассматриваемого объема жидкости происходит под действием внешних поверхностных сил, приложенных на его границах, за счет предварительно сообщенной кинетической энергии (например, за счет работы насоса, вентилятора, ветра).

Вынужденное движение может, в общем случае, может сопровождаться свободным. Относительное влияние последнего тем больше, чем больше разница температур отдельных частиц среды и чем меньше скорость вынужденного движения. При больших скоростях вынужденного движения влияние свободной конвекции становится пренебрежимо мало.

ТЕОРИЯ ПОДОБИЯ

— теоретическая основа воспроизведения в лабораторных условиях геол. структур, аналогичных наблюдаемым в природе. Чтобы воспроизвести в лаборатории складку или разрыв, необходимо точно изменить (уменьшить) их масштаб как во времени, так и в пространстве. Иные по сравнению с природными условиями продолжительность и масштабы явления требуют использования в эксперименте материалов со свойствами, отличающимися от свойств обычных г. п.