
- •Определение, структура программного обеспечения
- •Вычислительной системы
- •Определение, функции операционной системы (ос)
- •Определение, основные принципы построения ос
- •Понятие вычислительного процесса
- •Понятие ресурса
- •Понятие активного процесса. Динамика состояний процесса
- •Понятие потока, мультипрограммирования
- •Идентификация процесса
- •Взаимодействие потоков
- •Классификация процессов
- •Классификация ресурсов
- •Понятие критических секций, основные требования к ним
- •Понятие тупика, условия его возникновения
- •14. Методы борьбы с тупиками. Описание каждого метода
- •15. Виды межпроцессных коммуникаций. Очереди сообщений. Сигналы
- •16. Виды межпроцессных коммуникаций. Конвейер. Сокеты
- •17. Понятие системных часов, таймера
- •18. Планирование выполнения процессов в системах реального времени
- •19. Отображение пространства имен на физическую память компьютера
- •20. Сегментный способ организации виртуальной памяти
- •21. Страничный способ организации виртуальной памяти
- •22. Сегментно-страничный способ организации виртуальной памяти
- •23. Управление памятью вычислительной системы
- •24. Понятие файловой системы
- •25. Особенности файловой системы fat
- •26. Особенности файловой системы ntfs
- •27. Понятие ввода/вывода. Основные задачи супервизора ввода/вывода
- •28. Режимы ввода/вывода, их характеристика
- •29. Процесс управления вводом/выводом
- •30. Понятие микроядерной операционной системы
- •В пользовательское пространство
- •31. Понятие монолитной операционной системы
- •32. Классификация операционных систем
- •33. Особенности сетевых и распределенных операционных систем
- •34. Понятие прерывания. Механизм обработки прерываний
- •35. Синхронные и асинхронные прерывания
- •36. Дисциплины диспетчеризации
- •37. Понятие утилиты. Виды утилит
- •38. Понятие компилятора, интерпретатора, отладчика, компоновщика, байт-кода
- •39. Виды систем защиты программного обеспечения
- •40. Показатели применимости и критерии оценки систем защиты программного обеспечения
34. Понятие прерывания. Механизм обработки прерываний
Прерывания представляют собой механизм, позволяющий координировать параллельное функционирование отдельных устройств вычислительной системы и реагировать на особые состояния, возникающие при работе процессора. Таким образом, прерывание – это принудительная передача управления от выполняемой программы к системе (а через неё – к соответствующей программе обработки прерывания), происходящая при возникновении определенного события.
Идея прерываний была предложена в середине 50-х годов и внесла наиболее весомый вклад в развитие вычислительной техники. Основная цель введения прерываний – реализация асинхронного режима работы и распараллеливание работы отдельных устройств вычислительного комплекса.
Механизм прерываний реализуется аппаратно-программными средствами. Структуры систем прерывания (в зависимости от аппаратной архитектуры) могут быть самыми разными, но все они имеют одну общую особенность – прерывание непременно влечет за собой изменение порядка выполнения команд процессором.
Механизм обработки прерываний независимо от архитектуры вычислительной системы включает следующие элементы:
установление факта прерывания (прием сигнала на прерывание) и идентификация прерывания (в операционных системах иногда осуществляется повторно, на шаге 4);
запоминание состояния прерванного процесса. Состояние процесса определяется, прежде всего, значением счетчика команд, содержимым регистров процессора и может включать также спецификацию режима (например, режим пользовательский или привилегированный) и другую информацию;
управление аппаратно передаётся подпрограмме обработки прерывания. В простейшем случае в счётчик команд заносится начальный адрес подпрограммы обработки прерываний, а в соответствующие регистры – информация из слова состояния. В более развитых процессорах осуществляется достаточно сложная процедура определения начального адреса соответствующей подпрограммы обработки прерывания и не менее сложная процедура инициализации рабочих регистров процессора;
сохранение информации о прерванной программе, которую не удалось спасти на шаге 2 с помощью действий аппаратуры. В некоторых вычислительных системах предусматривается запоминание довольно большого объёма информации о состоянии прерванного процесса;
обработка прерывания. Эта работа может быть выполнена той же подпрограммой, которой было передано управление на шаге 3, но в ОС чаще всего она реализуется путем последующего вызова соответствующей подпрограммы;
восстановление информации, относящейся к прерванному процессу (этап, обратный шагу 4);
возврат в прерванную программу.
Шаги 1-3 реализуются аппаратно, а шаги 4-7 – программно.
На рис.15.1 показано, что при возникновении запроса на прерывание естественный ход вычислений нарушается и управление передаётся программе обработки возникшего прерывания. При этом средствами аппаратуры сохраняется (как правило, с помощью механизмов стековой памяти) адрес той команды, с которой следует продолжить выполнение прерванной программы. После выполнения программы обработки прерывания управление возвращается прерванной ранее программе посредством занесения в указатель команд сохранённого адреса команды. Однако такая схема используется только в самых простых программных средах. В мультипрограммных операционных системах обработка прерываний происходит по более сложным схемам, о чём будет более подробно написано ниже.
Главные функции механизма прерываний:
распознавание или классификация прерываний;
передача управления соответственно обработчику прерываний;
корректное возвращение к прерванной программе.
Переход от прерываемой программы к обработчику и обратно должен выполняться как можно быстрей. Одним из быстрых методов является использование таблицы, содержащей перечень всех допустимых для компьютера прерываний и адреса соответствующих обработчиков. Для корректного возвращения к прерванной программе перед передачей управления обработчику прерываний содержимое регистров процессора запоминается либо в памяти с прямым доступом, либо в системном стеке (system stack).
Рис.15.1. Обработка прерывания