
- •Определение, структура программного обеспечения
- •Вычислительной системы
- •Определение, функции операционной системы (ос)
- •Определение, основные принципы построения ос
- •Понятие вычислительного процесса
- •Понятие ресурса
- •Понятие активного процесса. Динамика состояний процесса
- •Понятие потока, мультипрограммирования
- •Идентификация процесса
- •Взаимодействие потоков
- •Классификация процессов
- •Классификация ресурсов
- •Понятие критических секций, основные требования к ним
- •Понятие тупика, условия его возникновения
- •14. Методы борьбы с тупиками. Описание каждого метода
- •15. Виды межпроцессных коммуникаций. Очереди сообщений. Сигналы
- •16. Виды межпроцессных коммуникаций. Конвейер. Сокеты
- •17. Понятие системных часов, таймера
- •18. Планирование выполнения процессов в системах реального времени
- •19. Отображение пространства имен на физическую память компьютера
- •20. Сегментный способ организации виртуальной памяти
- •21. Страничный способ организации виртуальной памяти
- •22. Сегментно-страничный способ организации виртуальной памяти
- •23. Управление памятью вычислительной системы
- •24. Понятие файловой системы
- •25. Особенности файловой системы fat
- •26. Особенности файловой системы ntfs
- •27. Понятие ввода/вывода. Основные задачи супервизора ввода/вывода
- •28. Режимы ввода/вывода, их характеристика
- •29. Процесс управления вводом/выводом
- •30. Понятие микроядерной операционной системы
- •В пользовательское пространство
- •31. Понятие монолитной операционной системы
- •32. Классификация операционных систем
- •33. Особенности сетевых и распределенных операционных систем
- •34. Понятие прерывания. Механизм обработки прерываний
- •35. Синхронные и асинхронные прерывания
- •36. Дисциплины диспетчеризации
- •37. Понятие утилиты. Виды утилит
- •38. Понятие компилятора, интерпретатора, отладчика, компоновщика, байт-кода
- •39. Виды систем защиты программного обеспечения
- •40. Показатели применимости и критерии оценки систем защиты программного обеспечения
22. Сегментно-страничный способ организации виртуальной памяти
При сегментно-страничном способе организации виртуальной памяти программа разбивается на логически законченные части – сегменты, виртуальный адрес содержит указание на номер соответствующего сегмента. Вторая составляющая виртуального адреса – смещение относительно начала сегмента, может состоять из двух полей:
виртуальной страницы;
индекса.
Виртуальный адрес состоит из трех компонентов:
сегмента;
страницы;
индекса.
Получение физического адреса и извлечение из памяти необходимого элемента для этого способа представлено на рис. 10.4.
Рис. 10.4.
Из рис.10.4 видно, что этот способ организации виртуальной памяти вносит ещё большую задержку доступа к памяти. Необходимо сначала вычислить адрес дескриптора сегмента и прочитать его, затем вычислить адрес элемента таблицы страниц этого сегмента и извлечь из памяти необходимый элемент, и уже только после этого можно к номеру физической страницы приписать номер ячейки в странице (индекс). Задержка доступа к искомой ячейке получается по крайней мере в три раза больше, чем при простой прямой адресации. Чтобы избежать этой неприятности, вводится кэширование, причем кэш, как правило, строится по ассоциативному принципу. Другими словами, просмотры двух таблиц в памяти могут быть заменены одним обращением к ассоциативной памяти.
Принцип действия ассоциативного запоминающего устройства предполагает, что каждой ячейке памяти такого устройства ставится в соответствие ячейка, в которой записывается некий ключ (признак, адрес), позволяющий однозначно идентифицировать содержимое ячейки памяти. Сопутствующую ячейку с информацией, позволяющей идентифицировать основные данные, обычно называют полем тега. Просмотр полей тега всех ячеек ассоциативного устройства памяти осуществляется одновременно, то есть в каждой ячейке тега есть необходимая логика, позволяющая посредством побитовой конъюнкции найти данные по их признаку за одно обращение к памяти (если они там, конечно, присутствуют). Часто поле тегов называют аргументом, а поле с данными – функцией. В качестве аргумента при доступе к ассоциативной памяти выступают номер сегмента и номер виртуальной страницы, а в качестве функции от этих аргументов получаем номер физической страницы. Остается приписать номер ячейки в странице к полученному номеру, и мы получаем искомую команду или операнд.
Оценим достоинства сегментно-страничного способа. Разбиение программы на сегменты позволяет размещать сегменты в памяти целиком. Сегменты разбиты на страницы, все страницы сегмента загружаются в память. Это позволяет уменьшить обращения к отсутствующим страницам, поскольку вероятность выхода за пределы сегмента меньше вероятности выхода за пределы страницы. Страницы исполняемого сегмента находятся в памяти, но при этом они могут находиться не рядом друг с другом, а «россыпью», поскольку диспетчер памяти манипулирует страницами. Наличие сегментов облегчает реализацию разделения программных модулей между параллельными процессами. Возможна и динамическая компоновка задачи. А выделение памяти страницами позволяет минимизировать фрагментацию.
Однако, поскольку этот способ распределения памяти требует значительных затрат вычислительных ресурсов и его не так просто реализовать по сравнению с рассмотренными ранее способами, поэтому используется он в мощных вычислительных системах.