
- •1 Нейронные сети в экономике 4
- •Введение
- •1Нейронные сети в экономике
- •1.1Понятия и основы нейронных искусственных сетей
- •1.2Свойства и классификация нейронных сетей
- •1.3Типы архитектур нейронных сетей.
- •1.4Использование нейронных сетей в экономических задачах
- •2.1Пояснительная записка
- •2.2Проектирование форм документов
- •Входная форма 1. Исходные данные
- •2.3Информационно-логическая модель
- •2.4 Алгоритм функционирования информационной системы
- •2.5Инструкция для пользователя
- •Выводы и предложения
- •Список использованной литературы
- •Приложения приложение 1 Сводный бухгалтерский баланс.
- •Приложение 2 График структуры имущества предприятия
- •Приложение 6 График эффективности реализации продукции
- •Приложение 7 Диаграмма финансовых результатов предприятия
1.4Использование нейронных сетей в экономических задачах
После того, как нейронная сеть обучена, мы можем применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно, действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейронная сеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные.
С помощью нейронных сетей решается задача разработки алгоритмов нахождения аналитического описания закономерностей функционирования экономических объектов (предприятие, отрасль, регион). Эти алгоритмы применяются к прогнозированию некоторых «выходных» показателей объектов. Решается задача нейросетевой реализации алгоритмов. Применение методов распознавания образов или соответствующих нейросетевых методов позволяет решить некоторые назревшие проблемы экономико-статистического моделирования, повысить адекватность математических моделей, приблизить их к экономической реальности. Использование распознавания образов в комбинации с регрессионным анализом привело к новым типам моделей - классификационным и кусочно-линейным. Нахождение скрытых зависимостей в базах данных - это основа задач моделирования и обработки знаний, в том числе для объекта с трудно формализуемыми закономерностями.
Выбор наиболее предпочтительной модели из некоторого их множества можно понимать либо как задачу ранжирования, либо как задачу выбора на основе набора правил.. Практика показала, что методы, основанные на использовании априорных весов факторов и поиске модели, отвечающего максимальной взвешенной сумме факторов, приводит к необъективным результатам. Веса - это то, что надо определить, в этом и состоит задача. Причем наборы весов локальны - каждый из них годится только для данной конкретной задачи и данного объекта (группы объектов).
Рассмотрим задачу выбора искомой модели подробнее. Предположим, что имеется некоторое множество объектов М, деятельность которых направлена на достижение некоторой цели. Функционирование каждого объекта характеризуется значениями n признаков, то есть существует отображение ф: М -> Rn. Следовательно, наш исходный пункт - вектор состояния экономического объекта: x = [x1,…,xn]. Показатели качества функционирования экономического объекта: f0(x), f1(x),…,fm(x). Эти показатели должны находиться в определенных пределах, а некоторые из них мы стремимся сделать либо минимальными, либо максимальными.
Такая общая постановка может быть противоречивой, и необходимо применять аппарат развязки противоречий и приведения постановки задачи к корректной форме, согласованной с экономическим смыслом.
Мы упорядочиваем объекты с точки зрения некоторой критериальной функции, но критерий, как правило, плохо определен, размыт и возможно противоречив.
Математическая модель может быть уравнением регрессии или диагностическим правилом, или правилом прогнозирования. При малой выборке эффективнее методы распознавания. При этом влияние управления факторами учитывается с помощью вариации значений факторов при их подстановке в уравнение закономерности или в решающее правило диагностики и прогнозирования. Этот математический аппарат нужен для прогнозирования и диагностики состояний экономических объектов.
Рассмотрим нейронную сеть с точки зрения теории комитетных конструкций, как на коллектив нейронов (индивидуумов. Нейронная сеть как механизм оптимизации работы нейронов при коллективных решениях это способ согласования индивидуальных мнений, при котором коллективное мнение является правильной реакцией на вход, то есть нужной эмпирической зависимостью.
Отсюда следует оправданность применения комитетных конструкций в задачах выбора и диагностики. Идея состоит в том, чтобы вместо одного решающего правила искать коллектив решающих правил, этот коллектив вырабатывает коллективное решение в силу процедуры, обрабатывающей индивидуальные решения членов коллектива. Модели выбора и диагностики как правило приводят к несовместным системам неравенств, для которых вместо решений надо искать обобщения понятия решения. Таким обобщением является коллективное решение.
Так, например, комитет системы неравенств - это такой набор элементов, что каждому неравенству удовлетворяет большинство злементов этого набора. Комитетные конструкции - некоторый класс обобщений понятия решения для задач, которые могут быть как совместными, так и несовместными. Это класс дискретных аппроксимаций для противоречивых задач, их можно также соотнести с размытыми решениями. Метод комитетов в настоящее время определяет одно из направлений анализа и решения задач эффективного выбора вариантов, оптимизации, диагностики и классификации. Приведём для примера определение одной из основных комитетных конструкций, а именно: для 0 < p < 1: p - комитетом системы включений называется такой набор элементов, что каждому включению удовлетворяет более чем р - я часть этого набора.
Комитетные конструкции можно рассматривать и как некоторый класс обобщений понятия решения на случай несовместных систем уравнений, неравенств и включений, и как средство распараллеливания в решении задач выбора, диагностики и прогнозирования. Как обобщение понятия решения задачи комитетные конструкции представляют собой наборы элементов, обладающие некоторыми (но, как правило, не всеми) свойствами решения, это вид размытых решений.
Как средство распараллеливания комитетные конструкции непосредственно выступают в многослойных нейронных сетях. Для обучения нейронной сети точному решению задачи классификации можно применить метод построения комитета некоторой системы аффинных неравенств.
Исходя из сказанного, можно заключить, что метод комитетов связан с одним из важных направлений исследования и численного решения как задач диагностики и выбора вариантов, так и задач настройки нейронных сетей с целью получения требуемого их реагирования на входную информацию по той или иной проблеме лица, принимающего решения.
В процессе эксплуатации метода комитетов выявились такие его важные для прикладных задач свойства как эвристичность, интерпретируемость, гибкость - возможность дообучения и перенастройки, возможность использования наиболее естественного класса функций - кусочно-аффинных, причем для постановки задачи классификации, диагностики и прогнозирования требуется лишь корректность, то есть, чтобы один и тот же объект не был отнесен к разным классам.
Другая сторона вопроса о комитетных конструкциях связана с понятием коалиций при выработке коллективных решений, при этом ситуации резко различаются в случае коллективных предпочтений (здесь много подводных камней) и в случае правил коллективной классификации, в этом случае процедуры можно строго обосновать и они имеют более широкие возможности. Поэтому важно уметь сводить задачи принятия решений и задачи прогнозирования к классификационным задачам.
Круг задач, для решения которых используются нейронные сети, во многом совпадает с задачами, решаемыми традиционными статистическими методами. Поэтому укажем преимущества нейросетей перед несколькими классическими методами статистики.
По сравнению с линейными методами статистики (линейная регрессия, авторегрессия, линейный дискриминант), нейронные сети позволяют эффективно строить нелинейные зависимости, более точно описывающие наборы данных. Из нелинейных методов классической статистики распространен, пожалуй, только байесовский классификатор, строящий квадратичную разделяющую поверхность, нейронная сеть же может построить поверхность более высокого порядка. Высокая нелинейность разделяющей поверхности наивного байесовского классификатора требует значительного суммарного числа примеров для возможности оценивания вероятностей при каждом сочетании интервалов значений переменных, нейронная сеть же обучается на всей выборке данных, не фрагментируя её, что повышает адекватность настройки нейронной сети.
При построении нелинейных моделей (например, полиномиальных) в статистических программах обычно требуется ручное введение-описание модели в символьном виде с точностью до значений параметров. Нейронная сеть же создается путем указания вида структуры, числа слоев и числа нейронов в каждом слое, что гораздо быстрее. А алгоритмы построения растущих нейросетей и вовсе не требуют первоначального задания размера нейронной сети. Альтернативой нейронной сети при построении сложных нелинейных моделей является только метод группового учета аргументов.
Для сжатия и визуализации данных в статистике разработан метод линейных главных компонент. Нейросети-автоассоциаторы позволяют эффективнее сжимать данные за счет построения нелинейных отображений и визуализировать данные в пространстве меньшего числа нелинейных главных компонент.
По сравнению с методами непараметрической статистики, нейронная сеть с радиальными базисными функциями позволяет сокращать число ядер, оптимизировать координаты и размытость каждого ядра. Это позволяет при сохранении парадигмы локальной ядерной аппроксимации ускорять дальнейший процесс принятия решения.
При обучении нейронной сети вместо критерия качества в виде наименьших квадратов можно использовать робастные критерии, дополнительно вести оптимизацию и других свойств нейронной сети. Алгоритмы обучения нейронной сети при этом остаются неизменными.
Необходимость решения прямой и обратной задач обычно требует построения двух моделей. При использовании же нейронных сетей можно обойтись одной сетью, обученной решать прямую задачу.
Наверно, в каждой предметной области при ближайшем рассмотрении можно найти постановки нейросетевых задач. Вот список отдельных областей, где решение такого рода задач имеет практическое значение уже сейчас.
Экономика и бизнес: предсказание рынков, автоматический трейдинг, оценка рисков невозврата кредитов, предсказание банкротств, оценка стоимости недвижимости, выявление пере- и недооцененных компаний, автоматическое рейтингование, оптимизация товарных и денежных потоков, автоматическое считывание и распознавание чеков и документов, безопасность транзакций по пластиковым картам.
Медицина: постановка диагноза, обработка медицинских изображений, мониторинг состояния пациента, факторный анализ эффективности лечения, очистка показаний приборов от шумов.
Авионика: обучаемые автопилоты, распознавание сигналов радаров, адаптивное пилотирование сильно поврежденного самолета, беспилотные летательные аппараты.
Связь: сжатие видеоинформации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.
Интернет: ассоциативный поиск информации, электронные секретари и агенты пользователя в Сети, фильтрация информации, блокировка спама, автоматическая рубрикация новостевых лент, адресные реклама и маркетинг для электронной торговли.
Автоматизация производства: оптимизация режимов производственного процесса, контроль качества продукции, мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций, робототехника.
Политологические и социологические технологии: предсказание результатов выборов, анализ социологических опросов, предсказание динамики рейтингов, выявление значимых факторов, объективная кластеризация электората, исследование и визуализация социальной динамики населения.
Безопасность и охранные системы: идентификация личности по отпечаткам пальцев, голосу, подписи, лицу, распознавание голоса, лиц в толпе, распознавание автомобильных номеров, анализ аэрокосмических снимков, мониторинг информационных потоков в компьютерной сети и обнаружение вторжений, обнаружение подделок.
Ввод и обработка информации: распознавание и обработка рукописных чеков, платежных, иных финансовых и бухгалтерских документов.
Геологоразведка: анализ сейсмических данных, ассоциативные методики поиска полезных ископаемых, оценка ресурсов месторождений.
Обилие приведенных выше применений нейронных сетей - не рекламный трюк. Просто нейросети - это новый, гибкий и мощный инструмент решения разнообразных задач обработки и анализа данных.
2ПРОЕКТИРОВАНИЕ АВТОМАТИЗИРОВАННОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ ДЛЯ АНАЛИЗА ЭФФЕКТИВНОСТИ РАБОТЫ ПРЕДПРИЯТИЙ (НА ПРИМЕРЕ ПРЕДПРИЯТИЙ КАЛАЧЕЕВСКОГО РАЙОНА ВОРОНЕЖСКОЙ ОБЛАСТИ И ПРЕДПРИЯТИЯ ООО СП "ПЛЕМЕННОЕ ПТИЦЕВОДЧЕСКОЕ ХОЗЯЙСТВО "ЗАБРОДЕНСКОЕ".