Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
нейронные сети.doc
Скачиваний:
7
Добавлен:
01.04.2025
Размер:
669.7 Кб
Скачать

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ

АГРАРНЫЙ УНИВЕРСИТЕТ ИМ. ИМПЕРАТОРА ПЕТРА I»

КАФЕДРА ИНФОРМАЦИОННОГО ОБЕСПЕЧЕНИЯ

И МОДЕЛИРОВАНИЯ АГРОЭКОНОМИЧЕСКИХ СИСТЕМ

Курсовой проект

на тему: «Проектирование автоматизированной информационной системы для анализа эффективности работы предприятий (на примере: предприятий Калачеевского района Воронежской области и предприятия

«ООО СП "ПЛЕМЕННОЕ ПТИЦЕВОДЧЕСКОЕ ХОЗЯЙСТВО "ЗАБРОДЕНСКОЕ"»)»

Выполнила: студентка БФ-2-7(БЭ)

Максимова А.И.

Руководитель: ассистент

Мистюкова С.В.

ВОРОНЕЖ

2011

Содержание

ВВЕДЕНИЕ 3

1 Нейронные сети в экономике 4

1.1 Понятия и основы нейронных искусственных сетей 4

1.2 Свойства и классификация нейронных сетей 6

1.3 Типы архитектур нейронных сетей. 8

1.4 Использование нейронных сетей в экономических задачах 11

2 ПРОЕКТИРОВАНИЕ АВТОМАТИЗИРОВАННОЙ ИНФОРМАЦИОННОЙ СИСТЕМЫ ДЛЯ АНАЛИЗА ЭФФЕКТИВНОСТИ РАБОТЫ ПРЕДПРИЯТИЙ (НА ПРИМЕРЕ ПРЕДПРИЯТИЙ КАЛАЧЕЕВСКОГО РАЙОНА ВОРОНЕЖСКОЙ ОБЛАСТИ И ПРЕДПРИЯТИЯ ООО СП "ПЛЕМЕННОЕ ПТИЦЕВОДЧЕСКОЕ ХОЗЯЙСТВО "ЗАБРОДЕНСКОЕ". 17

2.1 Пояснительная записка 17

2.2 Проектирование форм документов 18

2.3 Информационно-логическая модель 23

2.4 Алгоритм функционирования информационной системы 25

2.5 Инструкция для пользователя 26

Выводы и предложения 30

Список использованной литературы 32

ПРИЛОЖЕНИЯ 33

Введение

Нейронные сети представляют собой новую и весьма перспективную вычислительную технологию, дающую новые подходы к исследованию динамических задач в экономической области. Первоначально нейронные сети открыли новые возможности в области распознавания образов, затем к этому прибавились статистические и основанные на методах искусственного интеллекта средства поддержки принятия решений и решения задач в сфере экономики.

Способность к моделированию нелинейных процессов, работе с зашумленными данными и адаптивность дают возможности применять нейронные сети для решения широкого класса задач. В последние несколько лет на основе нейронные сетей было разработано много программных систем для применения в таких вопросах, как операции на товарном рынке, оценка вероятности банкротства банка, оценка кредитоспособности, контроль за инвестициями, размещение займов.

Целью данного курсового проекта является разработка автоматизированной информационной системы для анализа эффективности работы предприятий.

При создании АИС, для анализа эффективности работы предприятий, необходимо решить следующие задачи:

  1. Рассмотреть понятие, свойства, классификацию, типы и экономическое применение нейронных сетей.

  2. Изучить состав и функции автоматизированных информационных систем; изучить теоретические основы проектирования АИС;

  3. Освоить работу с основными видами прикладного программного обеспечения, использующегося для реализации АИС;

  4. Спроектировать формы входных, промежуточных и выходных документов;

  5. Построить информационно-логическую модель;

  6. Разработать алгоритм функционирования;

  7. Составить инструкцию для пользователя.

В процессе выполнения курсового проекта использованы такие научные методы как моделирование, описание, анализ, синтез, расчётно-конструктивный метод.

Технические средства, которые использовались для реализации поставленной цели – персональный компьютер с операционной системой Windows XP, клавиатурой и мышью.

АИС разрабатывалась в табличном процессоре MS Excel. Описание проделанной работы проводилось в текстовом процессоре MS Word.

1Нейронные сети в экономике

1.1Понятия и основы нейронных искусственных сетей

История создания искусственных нейронов уходит своими корнями в 1943 год, когда шотландец Маккаллок и англичанин Питтс создали теорию формальных нейросетей, а через пятнадцать лет Розенблатт изобрёл искусственный нейрон (перцептрон), который впоследствии и лёг в основу нейрокомпьютера.

В последние годы над искусственными нейронными сетями доминировали логические и символьно-операционные дисциплины. Кое-кто говорит, что искусственные нейронные сети заменят собой современный искусственный интеллект, но многое свидетельствует о том, что они будут существовать, объединяясь в системах, где каждый подход используется для решения тех задач, с которыми он лучше справляется.

Эта точка зрения подкрепляется тем, как люди функционируют в нашем мире. Распознавание образов отвечает за активность, требующую быстрой реакции. Так как действия совершаются быстро и бессознательно, то этот способ функционирования важен для выживания во враждебном окружении.

Когда наша система распознавания образов не в состоянии дать адекватную интерпретацию, вопрос передается в высшие отделы мозга. Они могут запросить добавочную информацию и займут больше времени, но качество полученных в результате решений может быть выше.

Можно представить себе искусственную систему, подражающую такому разделению труда. Искусственная нейронная сеть реагировала бы в большинстве случаев подходящим образом на внешнюю среду. Решения, принимаемые на этом более высоком уровне, были бы конкретными и логичными, но они могут нуждаться в сборе дополнительных фактов для получения окончательного заключения.

Развитие искусственных нейронных сетей вдохновляется биологией. То есть рассматривая сетевые конфигурации и алгоритмы, исследователи мыслят их в терминах организации мозговой деятельности. Но на этом аналогия может и закончиться. Наши знания о работе мозга столь ограничены, что мало бы нашлось руководящих ориентиров для тех, кто стал бы ему подражать. Поэтому разработчикам сетей приходится выходить за пределы современных биологических знаний в поисках структур, способных выполнять полезные функции.

Несмотря на то, что связь с биологией слаба и зачастую несущественна, искусственные нейронные сети продолжают сравниваться с мозгом. Их функционирование часто напоминает человеческое познание, поэтому трудно избежать этой аналогии.

Нервная система человека, построенная из элементов, называемых нейронами, имеет ошеломляющую сложность. Около 1011 нейронов участвуют в примерно 1015 передающих связях, имеющих длину метр и более. Каждый нейрон обладает многими качествами, общими с другими элементами тела, но его уникальной способностью является прием, обработка и передача электрохимических сигналов по нервным путям, которые образуют коммуникационную систему мозга.

Рисунок 1 Биологический нейрон

На Рисунок 1 показана структура пары типичных биологических нейронов. Дендриты идут от тела нервной клетки к другим нейронам, где они принимают сигналы в точках соединения, называемых синапсами. Принятые синапсом входные сигналы подводятся к телу нейрона. Здесь они суммируются, причем одни входы стремятся возбудить нейрон, другие – воспрепятствовать его возбуждению. Когда суммарное возбуждение в теле нейрона превышает некоторый порог, нейрон возбуждается, посылая по аксону сигнал другим нейронам. У этой основной функциональной схемы много усложнений и исключений, тем не менее большинство искусственных нейронных сетей моделируют лишь эти простые свойства.

Основу каждой нейросети составляют относительно простые, в большинстве случаев – однотипные, элементы (ячейки), имитирующие работу нейронов мозга. Далее под нейроном будет подразумеваться искусственный нейрон, то есть ячейка нейросети. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Искусственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона.