- •1. Опыт: бросание монеты 13
- •2. Опыт: бросание игральной кости 14
- •Возникновение и развитие теории вероятностей До появления аксиоматики Колмогорова
- •В наше время
- •Необходимость теории вероятностей как науки
- •Возможность анализа случайных явлений
- •Новый язык для описания объектов
- •Распространение вероятностной и статистической терминологии
- •Элементарный исход
- •1. Опыт: бросание монеты
- •2. Опыт: бросание игральной кости
- •Пространство элементарных исходов
- •Советы по построению пространства элементарных исходов.
- •Определения Подмножества
- •Алгебра и сигма-алгебра
- •Вероятностное пространство
- •Парадокс определения вероятностного пространства
- •Дискретная вероятностная модель
- •Конечное пространство элементарных исходов
- •Классическая вероятностная модель
- •Связь классической вероятностной модели с комбинаторикой
- •Основная формула комбинаторики
- •Урновая схема
- •Общее определение вероятности для экспериментов с конечным или счетным числом исходов
- •Дискретное распределение и вероятность
- •Равномерное распределение - классическая вероятностная модель
- •Биномиальное распределение – схема Бернулли
- •Мультиномиальное распределение – схема бросания частиц по ячейкам
- •Геометрическое распределение – испытания до первого успеха
- •Распределение Паскаля – испытания до m-того успеха
- •Пуассоновское распределение - теорема Пуассона
- •Теорема Пуассона.
- •Независимость событий и условная вероятность. Построение моделей.
- •Независимость Различие между независимостью попарно и в совокупности. Пример Бернштейна
- •Использование понятия независимости для построения моделей. Произведение вероятностных пространств.
- •Примеры построения моделей.
- •Расчет надежности при параллельном соединении элементов.
- •Расчет надежности при последовательном соединении элементов
- •Расчет надежности сложной системы.
- •Замечания к примерам.
- •Условная вероятность
- •Урновая схема
- •Марковская зависимость
- •Формула полной вероятности и формула Байеса
- •Случайные величины
- •Отображения вероятностных пространств
- •Случайная величина
- •Борелевская сигма-алгебра
- •Определение случайной величины
- •Распределения случайных величин и векторов Функция распределения
- •Дискретные распределения на прямой
- •Вырожденное распределение
- •Бернуллиевское распределение
- •Биномиальное распределение
- •Геометрическое распределение
- •Пуассоновское распределение
- •Произвольное дискретное распределение
- •Функция распределения случайной величины
- •Непрерывные распределения на прямой
- •Равномерное распределение на отрезке.
- •Мера Лебега на прямой.
- •Плотность распределения
- •Вероятностный смысл плотности распределения
- •Бета-распределение на отрезке [0,1]
- •Смеси распределений.
- •Нормальное (гауссовское) распределение.
- •Экспоненциальное (показательное) распределение.
- •Гамма-распределение.
- •Построение меры в конечномерном пространстве Борелевская сигма-алгебра в конечномерном пространстве
- •Определение случайного вектора
- •Мера Лебега в конечномерном пространстве
- •Мера Лебега на квадрате - Задача о встрече
- •Независимые случайные величины
- •Многомерное нормальное распределение
- •Числовые характеристики случайных величин и векторов
- •Интеграл Лебега – математическое ожидание
- •Свойства интеграла Лебега (математического ожидания)
- •Неравенства Неравенство Маркова
- •Неравенство Чебышева. Дисперсия
- •Неравенство Коши-Буняковского-Шварца. Ковариация
- •Неравенство Йенсена.Выпуклые функции
- •Моменты
- •Вычисление математического ожидания.
- •Теорема Лебега о замене переменных
- •Вычисление интеграла Лебега на прямой.
- •Вычисление маргинальных плотностей
- •Вычисление числовых характеристик важных распределений.
- •Взаимосвязь различных видов сходимости
- •Закон больших чисел в форме Бернулли
- •Предельные теоремы теории вероятностей
- •Закон больших чисел в форме Чебышева
- •Определение условного распределения и условной плотности Условное распределение
Распределение Паскаля – испытания до m-того успеха
Покажите, что таким образом заданная функция является распределением |
Распределение на пространстве натуральных чисел
называется распределение Паскаля , если
Здесь m – произвольное натуральное число. |
Указанное распределение возникает в следующей вероятностной схеме, называемой схема испытаний до m-того успеха.
Рассмотрим последовательность из независимых (с точки зрения здравого или физического смысла) опытов, в каждом из которых может произойти или не произойти некоторое событие A (“успех”). Пусть нам известна вероятность p , того что событие А произойдет в одном опыте. Вероятность того, что в m – тый раз событие A произойдет в k – том опыте дается формулой
Действительно , в первых k-1 опытах должен быть ровно m-1 успех и в последнем, к-том, обязательно успех.
Пуассоновское распределение - теорема Пуассона
Пусть
некоторый параметр.
Распределение на пространстве неотрицательных целых чисел называется пуассоновское распределение (распределение Пуассона), если
Распределение Пуассона является предельным случаем биномиального распределения при специальном поведении параметров (n,p) биномиального распределения Это будет показано в дальнейшем. Заметим, что биномиальное распределение можно рассматривать как распределение на пространстве неотрицательных целых чисел, положив
Определим на сигма-алгебре всех подмножеств неотрицательных целых чисел две вероятности P и Pn ,, соответствующие пуассоновскому и биномиальному распределениям :
Теорема Пуассона.
Пусть параметры биномиального распределения изменяются следующим образом
Тогда
т.е. биномиальная вероятность стремится к пуассоновской вероятности.
Доказательство.
Действительно, сгруппировав множители входящие в pk,n следующим образом
получим
Доказательство завершено.
При больших k рассчитать пуассоновскую вероятность гораздо легче, биномиальную. Пуассоновское распределение используется для приближения биномиального распределения в тех случаях, когда количество испытаний в схеме Бернулли велико, а вероятность успеха мала.
Независимость событий и условная вероятность. Построение моделей.
При построении дискретных вероятностных моделей достаточно определить распределение на множестве элементарных исходов. Для того, чтобы определить вероятность элементарного исхода часто используют понятие независимости и понятие условной вероятности.
Независимость Различие между независимостью попарно и в совокупности. Пример Бернштейна
Данный пример показывает, что существуют попарно независимые события , которые не являются независимыми в совокупности.
Рассмотрим тетраэдр, грани которого покрашены в три цвета следующим образом:
1 грань – синяя
2 грань – зеленая
3 грань – желтая
4 грань разделена на три сектора – синий, зеленый и желтый.
Опыт состоит в бросании тетраэдра и наблюдении цвета выпавшей (нижней) грани.
Обозначим события
A – на грани есть синий цвет
B – на грани есть зеленый цвет
C – на грани есть желтый цвет
Тогда, используя симетричность тетраэдра и классическую вероятностную модель получим:
Для исключения неоднозначности при интерпретации понятия независимости в теории вероятностей при построении моделей используется, в основном, независимость в совокупности, как более сильная. В дальнейшем говоря о независимости мы, если не указано противное, будем подразумевать независимость в совокупности.
