Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика рейтинг 1.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
290.5 Кб
Скачать

1.Что называется интерференцией волн, когерентные волны.

Волны называются когерентными, если разность их фаз остается постоянной во времени. Очевидно, что когерентными могут быть лишь волны, имеющие одинаковую частоту. При наложении в пространстве двух (или нескольких) когерентных волн в разных его точках получается усиление или ослабление результирующей волны в зависимости от соотношения между фазами этих волн. Это явление называется интерференцией волн.

2.Наложение двух когерентных сферических волн.

Р ассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками S1 и S2 (рис. 221), колеблющимися с одинаковыми амплитудой А0 и частотой и постоянной разностью фаз.

г де r1 и r2 — расстояния от источников волн до рассматриваемой точки В, k волновое число, 1 и 2 — начальные фазы обеих накладывающихся сферических волн.

Амплитуда результирующей волны в точке В по (144.2) равна

3.Разность хода волн, интерференционный максимум, минимум.

Т ак как для когерентных источников разность начальных фаз (12) = const, то результат наложения двух волн в различных точках зависит от величины  = r1r2, называемой разностью хода волн.

В точках, где наблюдается интерференционный максимум: амплитуда результирующего колебания А=A0/r1 + A0/r2

В точках, где наблюдается интерференционный минимум: амплитуда результирующего колебания А=|A0/r1+A0/r2|; m=0, 1, 2, ..., называется соответственно порядком интерференционного максимума или минимума

4. Стоячие волны. Уравнение стоячей волны.

стоячее волны — это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами

Д ля вывода уравнения стоячей волны предположим, что две плоские волны распространяются навстречу друг другу вдоль оси х в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами Кроме того, начало координат выберем в точке, в которой обе волны имеют одинаковую начальную фазу, а отсчет времени начнем с момента, когда начальные фазы обеих волн равны нулю. Тогда соответственно уравнения волны, распространяющейся вдоль положительного направления оси х, и волны, распространяющейся ей навстречу, будут иметь вид

С ложив эти уравнения и учитывая, что k=2v/X (см. (154.3)), получим уравнение стоячей волны

5 .Пучности и узлы стоячей волны

В точках среды, где амплитуда колебаний достигает максимального значения, равного 2А. В точках среды, где

амплитуда колебаний обращается в нуль. Точки, в которых амплитуда колебаний максимальна (Аст=2А), называются пучностями стоячей волны, а точки, в которых амплитуда колебаний равна нулю (Aст=0), называются узлами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают

Из выражений (157.3) и (157.4) получим соответственно координаты пучностей и узлов

6.Звуковые волны. Интенсивность звука

Звуковыми (или акустическими) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16—20 000 Гц. Волны указанных частот, воздействуя на слуховой аппарат человека, вызывают ощущение звука. Волны с < 16 Гц (инфразвуковые) и > 20 кГц (ультразвуковые) органами слуха человека не воспринимаются

И нтенсивностью звука (или силой звука) называется величина, определяемая средней по времени энергией, переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны Единица интенсивности звука в СИ — ватт на метр в квадрате (Вт/м2)

7.Уровень интенсивности звука, громкость звука

Е сли интенсивность звука является величиной, объективно характеризующей волновой процесс, то субъективной характеристикой звука, связанной с его интенсивностью, является громкость звука, зависящая от частоты. Согласно физиологическому закону Вебера — Фехнера, с ростом интенсивности звука громкость возрастает по логарифмическому закону. На этом основании вводят объективную оценку громкости звука по измеренному значению его интенсивности где I0 — интенсивность звука на пороге слышимости, принимаемая для всех звуков равной 10–12 Вт/м2 Величина L называется уровнем интенсивности звука и выражается в белах (в честь изобретателя телефона Белла). Обычно пользуются единицами, в 10 раз меньшими, — децибелами (дБ

8.Закон прямолинейного распространения света. Закон независимости световых пучков

Закон прямолинейного распространения света: свет в оптически однородной среде распространяется прямолинейно. Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их точечными источниками света (источники, размеры которых значительно меньше освещаемого предмета и расстояния до него). Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит сквозь очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия

Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены. Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо. Если свет падает на границу раздела двух сред (двух прозрачных веществ), то падающий луч I (рис. 229) разделяется на два — отраженный II и преломленный III, направления которых задаются законами отражения и преломления

9 .Закон отражения, закон преломления

Закон отражения: отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения; угол i'1 отражения равен углу i1 падения

З акон преломления: луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред

1 0.Показатель преломления, угол полного отражения где n21 относительный показатель преломления