
- •8 Теорема об эквивалентном генераторе
- •1.9 Преобразование реального источника напряжения в реальный источник тока
- •1.10 Преобразование треугольника сопротивлений в эквивалентную звезду
- •1.11 Преобразование звезды сопротивлений в эквивалентный треугольник
- •2.2 Разряд и заряд конденсатора через резистор
- •2.3 Конденсатор в цепи переменного синусоидального тока
- •2.5 Переходные процессы в цепях с катушкой индуктивности
- •2.6 Катушка индуктивности в цепи переменного
- •2.7 Использование комплексных чисел при расчете электрических цепей переменного синусоидального тока
- •1. Параллельное соединение и
- •2. Последовательное соединение и
- •2.10 Мощность цепи переменного синусоидального тока
- •Баланс мощности в сложных
- •Метод контурных токов
- •Метод узловых потенциалов
- •Метод двух узлов
- •2. Несинусоидальные периодические токи.
- •3. Максимальные, средние и действующие значения
- •4. Расчет цепей при несинусоидальных эдс и токах.
- •5. Мощность цепи несинусоидального тока
- •3. Каскадное соединение четырехполюсников
- •2. Классический метод расчета переходных процессов
- •3. Переходные процессы в цепях синусоидального тока
- •4. Операторный метод расчета переходных процессов
- •5. Свойства (теоремы) преобразования Лапласа
- •1 Принцип построения трехфазной системы
- •2. Соединение звездой
- •3. Соединение треугольником
- •4. Мощность в трехфазных цепях
- •1. Основные определения
- •2. Свойства ферромагнитных материалов
- •3. Расчет магнитных цепей
- •4. Трансформатор
- •4.1. Устройство
- •4.2. Холостой ход
- •4.3. Режим нагрузки
- •4.4. Пример
3. Соединение треугольником
Если обмотки генератора трехфазного тока соединить так, как показано на рисунке 5, то получим соединение треугольником
Кажущегося короткого замыкания в обмотках генератора не произойдет, так как сумма мгновенных значений ЭДС в них равна нулю:
|
(6) |
в чем легко убедиться, построив векторную диаграмму.
Рисунок 5 – Соединение треугольником
Применим для каждой узловой точки потребителя первый закон Кирхгофа:
|
(7) |
Из этих соотношений видно, что любой из линейных токов равен геометрической разности двух фазных токов. Кроме того, почленное сложение этих равенств показывает, что геометрическая сумма линейных токов равна нулю:
|
(8) |
Для построения векторной диаграммы в качестве исходных берут три вектора линейных напряжений, расположенных под углом 120° друг относительно друга (рисунок 6).
|
Рисунок 6 – Векторная диаграмма при соединении треугольником |
При симметричной нагрузке векторы фазных токов сдвинуты по фазе относительно соответствующих напряжений на угол φ, величина которого зависит от характера нагрузки.
В трехфазных цепях способ включения нагрузки (звездой или треугольником) не зависит от способа включения обмоток генератора или трансформатора, питающего данную цепь.
Билет 29
4. Мощность в трехфазных цепях
Трехфазная цепь является обычной цепью синусоидального тока с несколькими источниками. Активная мощность трехфазной цепи равна сумме активных мощностей фаз
|
(9) |
Формула (9) используется для расчета активной мощности в трехфазной цепи при несимметричной нагрузке. При симметричной нагрузке:
При соединении в треугольник симметричной нагрузки
При
соединении в звезду
В обоих случаях
|
(10) |
Билет 30
Магнитные цепи
1. Основные определения
Вокруг
проводника с током появляется магнитное
поле. Интенсивность магнитного поля
характеризуется векторной величиной:
напряженностью магнитного поля
,
измеряемой в амперах на метр (A/м).
Интенсивность магнитного поля
характеризуется также вектором магнитной
индукции
,
измеряемой в теслах (Тл). Напряженность
магнитного поля не зависит, а магнитная
индукция зависит от свойств окружающей
среды.
где
– абсолютная
магнитная проницаемость, Гн/м;
Гн/м.
- относительное значение магнитной
проницаемости, безразмерная величина;
В
зависимости от значения
,
все вещества делятся на три группы:
диамагнетики
,
парамагнетики
и ферромагнетики
.
К ферромагнетикам принадлежат железо, никель, кобальт и многие сплавы из неферромагнитных веществ.
Магнитная цепь – совокупность устройств, содержащих ферромагнитные вещества. Процессы в магнитных цепях описываются с помощью понятий магнитодвижущей силы, магнитного потока.
Магнитным потоком называется поток вектора магнитной индукции через поверхность S
.
Магнитный поток измеряется в веберах (Вб).
Источником магнитодвижущей силы является либо постоянный магнит, либо электромагнит (катушка, обтекаемая током). Магнитодвижущая сила электромагнита
где
- ток, протекающий в катушке;
- число витков катушки.
В магнитных цепях используется свойство ферромагнитного материала тысячекратно усиливать магнитное поле катушки с током за счет собственной намагниченности.
Билет 31