
- •Атлас облаков
- •236000, Г. Калининград, ул. К. Маркса, 18.
- •Облака верхнего яруса 37
- •1 Образование облаков и их классификация
- •1.1 Образование облаков
- •1.2 Морфологическая классификация облаков
- •2 Описание форм и видов облаков
- •2.1 Облака верхнего яруса
- •2.2 Облака среднего яруса
- •2.3 Облака нижнего яруса
- •2.4 Облака вертикального развития
- •3.1 Фронтальные системы облаков
- •3.1.1 Система облаков теплого фронта
- •3.1.2 Системы облаков холодного фронта
- •3.1.3 Системы облаков фронта окклюзии
- •3.2 Внутримассовые системы облаков
- •3.3.2 Серебристые облака
- •3.4.1 Характеристика переходных форм
- •3.4.2 Характерные сочетания форм облаков
- •3.4.3 Особые виды облаков и состояний неба
- •3.5 Облака как местный признак погоды
- •3.5.1 Облака верхнего яруса
- •3.5.2 Облака среднего яруса
- •3.5.3 Облака нижнего яруса
- •3.5.4 Облака вертикального развития
- •4 Местные формы облаков
- •4.1 Облачность горных территорий
- •4.2 Облачность полярных территорий
- •4.3 Облачность над морскими акваториями
- •5 Атмосферные явления
- •6 Космические снимки облачности
- •6.1 Эволюция фронтальных облачных систем
- •6.2 Образование облачных вихрей
- •6.3 Перемещение облачных систем и атмосферных фронтов
- •7 Радиолокационные снимки облачности
6.3 Перемещение облачных систем и атмосферных фронтов
Исследование динамики облачных образований по серии последовательных снимков облачности представляется весьма важным при анализе облачной обстановки.
Облачный вихрь, имеющий спиралевидную структуру, перемещается вдоль вектора, направленного от центра безоблачной зоны к центру массива наиболее мощной облачности в пределах облачной спирали. Для оценки направления смещения облачного вихря следует использовать выбросы перистых облаков, которые указывают на направление перемещения облачного вихря (рис. 6.7).
Облачные вихри, связанные с южными циклонами (циклонами, смещающимися на север и северо-восток), перемещаются в направлении выпуклости шапки, форму которой обычно имеют СЬ.
Облачная полоса теплого фронта имеет наибольшую горизонтальную протяженность (до 1000 км) на начальных стадиях развития циклона (до начала процесса окклюдирования) и состоит из облаков слоистых форм (рис. 6.8).
Облачная полоса холодного фронта выгибается в сторону теплого воздуха. Чем больше ее кривизна, тем быстрее облачная полоса смещается в направлении нормали, проведенной из центра безоблачной зафронтальной зоны к фронтальной облачной полосе. Если профиль облачной полосы меняется (умень-
47
шается кривизна или появляется выпуклость в сторону холодного воздуха), то на этом участке скорость движения облачной полосы снижается (рис. 6.9).
По облачности можно также определить направление перемещения фронта окклюзии, которое определяется на участке, где структура облачности в пределах облачной полосы и за фронтом более или менее однородна. Данный участок фронта движется вдоль вектора, перпендикулярного к фронтальной облачной полосе (рис. 6.10).
Таким образом, анализ космических снимков облачности позволяет уточнить и конкретизировать облачную обстановку, определенную по данным наземных наблюдений, а также получить обобщенную информацию об облачности на значительной территории.
7 Радиолокационные снимки облачности
Радиолокационные наблюдения за облачным покровом позволяют определить наличие и структуру системы облаков в радиусе до 200 км от места установки метеорологического радиолокатора (МРЛ). При этом с помощью МРЛ, фиксирующего отраженные сигналы от облаков (радиоэхо), можно получить данные о горизонтальной протяженности облачной системы, наличии зон с градом, грозой и ливнем в радиусе 150—200 км летом и 50—90 км зимой, а о мощных кучевых облаках без осадков — в радиусе 40—50 км и 10—20 км соответственно. Слоисто-дождевые облака МРЛ обнаруживает на расстоянии 90—120 км в летний период и 60—70 км зимой.
По данным вертикальных радиолокационных разрезов облаков, в частности по высоте радиоэха {Н) и отражаемости (Z) обла-
ков и осадков, можно судить о форме облаков, наличии или отсутствии осадков.
Материалы радиолокационных наблюдений показали, что мезомасштабные поля облаков имеют протяженность порядка 60—100 км и более, а продолжительность существования таких облаков составляет от нескольких до десяти часов.
Достоинством радиолокационных наблюдений является то, что они охватывают большую площадь, при необходимости могут проводиться непрерывно, содержат новые сведения не только об отдельных облаках, но и их системах.
Ниже приводятся типовые примеры радиолокационных снимков, характеризующие различные формы мезомасштабных полей облаков, полученных сотрудниками филиала ГГО — Научно-исследовательского центра дистанционного зондирования атмосферы (НИЦ ДЗА) в пос. Воейково (рис. 7.1—7.4).
Указанные снимки состоят из трех частей. В правой части этих снимков представлены результаты объемных горизонтальных разрезов облаков на индикаторе кругового обзора (ИКО). Эти данные получены метеорологическим радиолокатором типа МРЛ-5 во время непрерывного последовательного обзора пространства от угла места его антенны Одо 30° или 60° в зависимости от расстояния до облаков. В этой же части рисунков маркером со стрелкой выделена зона облака (квадрат), в которой проведен вертикальный разрез. Результаты этого разреза показаны в средней левой части рисунков, а над ним (левая верхняя часть рисунка) в более крупном масштабе — зона облака, выделенная маркером в правой части рисунка.
Положение стрелки на ИКО всех рисунков указывает азимутальное направление данного вертикального обзора. Это направление можно изменять от 0 до 359°.
В левой нижней части рисунков приводится изменение отражаемости Z в зависимости от высоты радиоэха облака Н
49
(величина отражаемости lg Z условно обозначена через Nb, откладывается по оси абсцисс; высота в километрах — по оси ординат). Величина отражаемости облака Z зависит от числа капель и их диаметра в облучаемом МРЛ объеме облака. Здесь же показана красная горизонтальная линия, которая характеризует высоту изотермы О °С, получаемой по данным радиозондирования атмосферы.
Слева от рисунков помещена таблица, в которой указаны номер каждого обзора МРЛ и время его проведения, а выше нее — градации lg Z и соответствующие им цвета.
На рис. 7.1 показана облачная система фронта окклюзии — слоисто-дождевые облака, простирающиеся с севера на юг почти на 200 км, высота радиоэха которых достигала 8 км. Наличие радиоэха до земли в средней левой части рисунка свидетельствует о выпадении осадков из облака.
На рис. 7.2 представлены результаты объемного горизонтального обзора мезосистемы облаков холодного фронта, сме-
щающегося с ЮЗ на СВ, состоящей из отдельных очагов куче-во-дождевых облаков. По азимуту 260° в обнаруженной системе наблюдалось развитие грозового облака, высота его верхней границы в 12 ч 50 мин всемирного скоординированного времени (ВСВ) была равна 12 км (на ИКО это облако помечено стрелкой).
На рис. 7.3 приводятся результаты наблюдений конвективных облаков до высоты 5 км. Из рисунка следует, что эта мезо-система облаков существенно отличается по структуре от фронтальной, приведенной на рис. 7.2. Характеризуется наличием изолированных ячеистых очагов облачности, что типично для внутримассовой конвективной облачности.
На рис. 7.4 представлены результаты наблюдений мезосистемы облаков теплого фронта, состоящей из слоистообразных облаков. Вертикальный разрез этих облаков показывает, что их высота не превышает 5,5 км, а изменение профиля отражаемости с высотой дает основание считать, что слабые осадки из этих облаков не достигают поверхности земли.