
- •Учебно-методический комплекс по дисциплине математика
- •270802 Строительство и эксплуатация зданий и сооружений
- •Для студентов очной формы обучения Альметьевск, 2012
- •Содержание
- •Уважаемый студент!
- •Раздел 1 алгебра
- •Тема 1.1 Элементы вычислительной математики
- •1.1.2. Приближенные значения величин
- •Тема 1.2. Корень. Степень
- •1.2.1. Корень n-ой степени.
- •1.2.2. Степень с рациональным показателем
- •Тема 1.3. Логарифмы
- •Понятие о логарифме числа.
- •Тема 1.4. Тригонометрия
- •Радианная и градусная меры углов
- •1.4.2. Формулы двойного аргумента
- •Тема 1.5. Комплексные числа
- •1.5.1. Понятие о мнимых и комплексных числах.
- •1.5.2. Формы записи комплексных чисел
- •Раздел 2. Функции и графики
- •Тема 2.1. Построение графиков функций
- •2.1.1. Графики показательных функций
- •2.1.2. Графики логарифмических функций
- •Раздел 3. Уравнения и неравенства
- •Тема 3.1. Рациональные уравнения и неравенства
- •3.1.1. Квадратные уравнения и неравенства. Метод интервалов
- •3.1.2. Определители второго порядка
- •3.1.3. Решение систем двух уравнений методом Крамера
- •3.1.4. Метод Гаусса
- •3.1.5. Решение текстовых задач на составление уравнений
- •Тема 3.2. Показательные уравнения и неравенства
- •3.2.1. Простейшие показательные уравнения и неравенства
- •3.2.2. Применение свойств степеней.
- •3.2.3. Показательные уравнения и неравенства, сводящиеся к квадратным
- •Тема 3.3. Логарифмические уравнения и неравенства
- •3.3.1. Простейшие логарифмические уравнения и неравенства
- •3.3.3. Применение свойств логарифмов
- •3.3.4. Логарифмические уравнения и неравенства, сводящиеся к квадратным
- •3.3.5. Системы логарифмических уравнений
- •Тема 3.4. Тригонометрические уравнения и неравенства
- •3.4.1. Обратные тригонометрические функции.
- •3.4.4. Решение тригонометрических уравнений разложением на множители
- •3.4.5. Решение тригонометрических уравнений разными способами
- •3.4.6. Тригонометрические неравенства.
- •Раздел 4. Начала математического анализа
- •Тема 4.1. Пределы функции
- •4.1.1. Последовательности. Предел функции
- •4.1.2. I и II замечательные пределы
- •Тема 4.2. Производная
- •4.2.1. Приращение функции. Производная
- •4.2.2. Правила дифференцирования
- •Тема 4.3. Приложения производной
- •4.3.1. Физический смысл производной. Мгновенная скорость. Ускорение
- •4.3.2. Геометрический смысл производной. Уравнение касательной
- •4.3.3. Возрастание и убывание функции. Точки экстремума
- •4.3.4. Выпуклость графика функции. Точка перегиба
- •4.3.5. Асимптоты
- •Тема4.4. Неопределенный интеграл
- •4.4.1. Первообразная функция
- •4.4.2. Неопределенный интеграл
- •Тема4.5. Определенный интеграл
- •4.5.1. Формула Ньютона-Лейбница
- •4.5.2. Метод замены переменной
- •Тема4.6. Приложения определенного интеграла
- •4.6.1. Площадь криволинейной трапеции
- •4.6.2. Вычисление пути, пройденного телом
- •Тема 4.7. Дифференциальные уравнения
- •4.7.1. Основные понятия дифференциального уравнения
- •4.7.2. Линейные однородные дифференциальные уравнения первого порядка
- •4.7.3 Линейные неоднородные дифференциальные уравнения первого порядка
- •Раздел 5. Комбинаторика, статистика и теория вероятностей
- •Тема 5.1. Элементы комбинаторики и теория вероятностей
- •5.1.1. Перестановки и факториалы. Правило умножения
- •5.1.2. Сочетание и размещение
- •5.1.3. Вероятности случайных событий
- •5.1.4. Сложение и умножение вероятностей случайных событий
- •Тема 5.2. Математическая статистика
- •5.2.1. Задачи математической статистики
- •5.2.2. Центральные тенденции: среднее значение, мода, медиана
- •Раздел 6. Геометрия
- •Тема 6.1. Элементы векторной алгебры и аналитической геометрии
- •6.1.1. Векторы. Действия над векторами.
- •6.1.2. Скалярное произведение векторов
- •6.1.3. Векторное произведение векторов
- •6.1.4. Прямая линия на плоскости. Уравнения прямых
- •6.1.5. Линии второго порядка на плоскости
- •Тема 6.2. Прямая и плоскость в пространстве
- •6.2.1. Аксиомы стереометрии
- •6.2.2. Взаимное расположение прямых и плоскостей в пространстве
- •Тема 6.3. Многогранники
- •6.3.1. Решение планиметрических задач
- •6.3.2. Призма.
- •6.3.3. Параллелепипед
- •Основные элементы
- •6.3.4. Пирамида.
- •6.3.5. Усеченная пирамида
- •6.3.6. Правильные многогранники
- •Тема 6.4. Тела вращения
- •6.4.1. Цилиндр
- •6.4.2. Площади поверхностей и объем цилиндра
- •6.4.3. Конус
- •6.4.4. Площади поверхностей и объем конуса
- •6.4.5. Усеченный конус
- •6.4.6. Шар и сфера
- •Контроль и оценка результатов освоения дисциплины Текущий контроль
- •Итоговый контроль Вопросы к дифференцированному зачету
- •Вопросы к экзамену
- •Глоссарий Абсолютная погрешность - разность между приближенным числом и его точным значением (из большего числа вычитается меньшее).
- •Информационное обеспечение дисциплины Основные источники
- •Дополнительные источники
Раздел 1 алгебра
Тема 1.1 Элементы вычислительной математики
1.1.1 Действительные числа
Основные понятия и термины: числа, числовые выражения, натуральные числа, целые числа, рациональные числа, иррациональные числа, действительные числа.
План изучения занятия:
1. Входное тестирование
2. Теоретическая часть
3. Практическая работа 1
4. Практическая работа 2
Краткое изложение теоретических вопросов:
Натуральные числа. Числа, которые используются для счета предметов: 1, 2, 3, ... . N = {1, 2, 3, ...} - множество натуральных чисел.
Целые числа. Натуральные числа 1, 2, 3, ... и число 0 образуют множество целых чисел. Z = {..., -3, -2, -1, 0, 1, 2, 3, ...} - множество целых чисел.
Рациональные числа. Числа которые можно представить в виде n/m, m€Z, n€N, называют рациональными. Q = N + Z + n/m - множество рациональных чисел.
Иррациональные числа. Числа, которые нельзя представить в виде n/m, m€Z, n€N, называют иррациональными. π; √2 - иррациональные числа
Действительные числа. Объединение рациональных и иррациональных чисел называют действительными числами. Множество действительных чисел обозначают символом R.
Замечание. Любое действительное число - бесконечная десятичная дробь.
Практические занятия
Действия над действительными числами
Числовые выражения
Задания для самостоятельного выполнения
Составить конспекты на темы:
Формулы сокращенного умножения
Периодические десятичные дроби
Форма контроля самостоятельной работы:
Устный опрос
Проверка конспектов
Вопросы для самоконтроля по теме:
1. Почему выражение - 5 + 8 – 11 называют алгебраической суммой? Назовите ее слагаемые и запишите данное выражение в виде суммы положительных и отрицательных чисел.
2. Вычислите: - 24,47 + 30,29 – 35,53 + 44,71
3. Как раскрыть скобки, перед которыми стоит: а) знак +; б) знак - ?
4. Запишите без скобок выражение: - (5 – 9) + ( - 3) ∙ (х + 5)
1.1.2. Приближенные значения величин
Основные понятия и термины: абсолютная погрешность, относительная погрешность
План изучения занятия:
1. Устный опрос
2. Теоретическая часть
3. Практическая работа 3
4. Практическая работа 4
Краткое изложение теоретических вопросов:
Действительное
число
- это бесконечная десятичная дробь. Но
производить вычисления с бесконечными
десятичными дробями неудобно, поэтому
на практике пользуются приближенными
значениями действительных чисел.
Например, для числа
пользуются приближенным равенством
3,141
или
3,142. Первое называют приближенным
значением числа п по недостатку с
точностью до 0,001; второе называют
приближенным значением числа к по
избытку с точностью до 0,001. Можно взять
более точные приближения: например,
3,1415 — приближение по недостатку с точностью до 0,0001; 3,1416 — приближение по избытку с точностью до 0,0001. Можно взять менее точные приближения, скажем, с точностью до 0,01: по недостатку 3,14, по избытку 3,15.
Абсолютной погрешностью или, короче, погрешностью приближенного числа называется разность между этим числом и его точным значением (из большего числа вычитается меньшее).
Пример 1. На предприятии 1284 рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет 1300 — 1284=16. При округлении до 1280 абсолютная погрешность составляет 1284 — 1280 = 4.
Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому числу.
Пример 2. В школе 197 учащихся. Округляем это число до 200. Абсолютная погрешность составляет 200 — 197 = 3. Относительная погрешность равна 3/197 или, округленно, 3/197 = 1,5 %.
Если приближенное число обозначить буквой а, то δ = Δ/a.
Практические занятия
Действия над приближенными числами
Погрешности вычислений
Задания для самостоятельного выполнения
Конспект: О-1, §3. Погрешности приближенных значений чисел, с.26.
Форма контроля самостоятельной работы:
Устный опрос
Проверка тетрадей
Вопросы для самоконтроля по теме:
1. Что называется абсолютной погрешностью приближенного числа?
2. Что называется относительной погрешностью приближенного числа?
3. Что называется границей абсолютной погрешности?
4. Что называется границей относительной погрешности?