
- •Общие сведения о металлах. Классификация металлов.
- •Понятие о кристаллической решетке. Простейшие типы кристаллических решеток твердых тел.
- •Строение реальных кристаллов, дефекты кристаллического строения.
- •Понятие о механических, физических, химических и технологических свойствах металлов. Аллотропия и анизотропия свойств.
- •Плавление и кристаллизация металлов. Кристаллизация чистого металла. Условия образования мелкозернистой структуры.
- •Понятие: система, сплав, компонент, фаза, твердый раствор, химическое соединение.
- •Диаграмма состояния сплавов, компоненты которой неограниченно растворимы в жидком и твердом состояниях (ιι рода)
- •Связь между типами диаграммы состояния и свойствами по н.С. Курнакову
- •Железо, его совйства, полиморфные превращения чистого железа.
- •Влияние углерода и постоянных примесей на структуру и свойства сталей.
- •Классификация и маркировка углеродистых сталей. Области применения.
- •Конструкционные стали. Классификация и маркировка по качеству.
- •Классификация чугунов. Серый чугун, маркировка, свойства, область применения.
- •Ковкий и высокопрочный чугуны. Маркировка, свойства и назначение.
- •Цели легирования стали, основные легирующие элементы. Принцип маркировки легированных сталей.
- •Диаграмма изотермического превращения аустенита. Диффузионное превращение
- •Диаграмма изотермического превращения аустенита. Промежуточное превращение
- •Мартенситное превращение аустенита. Критическая скорость закалки.
- •Классификация видов термической обработки стали. Краткая характеристика
- •Отжиг стали. Виды и цели отжига. Нормализация.
- •Закалка стали. Полная и неполная закалка. Свойства закаленной стали.
- •Виды закалки в зависимости от способа охлаждения: закалка в 2-х охладителях, ступенчатая, изотермическая.
- •Прокаливаемость стали, дефекты закалки, их устранение и предупреждение.
- •Поверхностная закалка стали, её назначение.
- •Отпуск стали. Превращение при отпуске закаленной стали
- •Виды и цели отпуска стали. Структура отпущенной стали.
- •Хто, виды и цели хто.
- •Цементация стали, её виды, основные параметры и области применения.
- •Азотирование стали, сущность процесса, назначение.
- •Нитроцементация и цианирование, сущность процесса, назначение.
- •Диффузионная металлизация. Область применения.
- •Конструкционные стали: цементуемые, улучшаемые
- •Рессорно-пружинные стали. Термообработка.
- •Углеродистые инструментальны стали, назначение, маркировка.
- •39. Медь и ее сплавы. Латуни, маркировка и область применения
- •40. Бронзы, маркировка и область применения.
Азотирование стали, сущность процесса, назначение.
Азотирование стали впервые предложено акад. Н. П. Чижевским. Процесс азотирования стальных деталей заключается в поверхностном насыщении азотом в среде аммиака (NH3) при температурах нагрева 500—700° С в течение 20—90 ч. Глубина азотированного слоя допускается в пределах 0,2—0,8 мм.
Азотирование применяется для повышения твердости, износостойкости, предела усталости, сопротивления коррозии и жаропрочности. Азотированию могут подвергаться детали из углеродистой низко-легированной и легированной сталей, а также чугун. Детали из углеродистой и низколегированной стали азотируют для увеличения сопротивления коррозии. Твердость азотированной. поверхности у них не превышает HV 250—300.
Легированные стали с содержанием хрома, никеля, алюминия и молибдена после азотирования имеют поверхностную твердость HV 850—1200 (рис. 37). Это достигается за счет образования мелкодисперсных нитридов на поверхности детали (химических соединений азота с элементами AlN, GrN, Cr2N, MoN).
Технологический процесс изготовления деталей при применении азотирования состоит из следующих этапов:
1) предварительная термическая обработка заготовки;
2) механическая обработка детали, включая шлифование;
3) защита мест, не подлежащих азотированию (покрытие тонким слоем олова гальваническим способом);
4) азотирование;
5) окончательное шлифование или доводка в соответствии с заданными допусками.
Необходимо иметь в виду, что при азотировании имеет место деформация деталей (коробление). Деформация детали будет тем больше, чем выше температура азотирования и глубина азотированного слоя и чем тоньше стенки детали.
Нитроцементация и цианирование, сущность процесса, назначение.
Нитроцементация сталей — процесс насыщения поверхности стали одновременно углеродом и азотом при 700—950 °C в газовой среде, состоящей из науглероживающего газа и аммиака. Наиболее часто нитроцементация проводится при 850—870 °С. После нитроцементации следует закалка в масло с повторного нагрева или непосредственно из нитроцементационной печи с температуры насыщения или небольшого подстуживания. Для уменьшения деформации рекомендуется применять ступенчатую закалку с выдержкой в горячем масле 180—200 °С.
При нитроцементации поверхность стали насыщается в газовой атмосфере углеродом и азотом. Нитроцементованный слой образуется в результате одновременной диффузии углерода и азота в аустените. Большинство деталей нитроцементуется при температурах выше 800° С, чаще всего при 840—860° С. Нитроцементованный слой, образующийся при этих температурах по существу аналогичен цементированному слою. Желательные механические свойства получаются за счет охлаждения его с температуры нитроцементации с такой скоростью, при которой достигается превращение углеродисто-азотистого аустенита в мартенсит. Если нитроцементация проводится при температурах ниже 700° С, на поверхности нитроцементованного слоя образуется слой соединений железа с углеродом и азотом, обладающий большой стойкостью против задиров и износа.
Цианированием называется процесс одновременного насыщения стали углеродом и азотом с целью повышения твердости, износостойкости и коррозионной стойкости изделия. Одновременное присутствие углерода и азота ускоряет их совместную диффузию в поверхностные слои металла. Цианированию подвергают углеродистые и легированные стали.
Различают два вида цианирования:
высокотемпературное, проводимое при температуре, лежащей выше Ас3,
низкотемпературное при температуре нижеAc1.
При высокотемпературном цианировании металл насыщается в большей степени углеродом, чем азотом, а при низкотемпературном цианировании — в большей степени азотом, чем углеродом.