Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тема 1 изм.doc
Скачиваний:
4
Добавлен:
01.04.2025
Размер:
825.86 Кб
Скачать

4. Механизм мышечных сокращений (самостоятельно)

События, развивающиеся на микроскопическом (субклеточном) уровне при возбуждении мышцы, выглядят следующим образом. Потенциал действия, возникающий в результате нервной или иной стимуляции на мембране мышечного волокна, в скелетных мышцах по Т-каналам достигает мембран цитоплазматического ретикулума. Мембрана последнего высвобождает ионизированный кальций, который, в свою очередь, активизирует процесс взаимодействия актиновых и миозиновых протофибрилл.

В гладких мышцах, лишенных тубулярной системы, высвобождение Са++ происходит непосредственно в самой сарколемме. А так как сарколемма напрямую контактирует с актомиозиновым комплексом гладких мышц, то активизация сокращения гладких мышц также происходит под влиянием ионизированного кальция.

Интимный механизм взаимодействия актиновых и миозиновых структур до конца не расшифрован. Однако ясно, что в присутствии АТФ в поперечнополосатых мышцах при выбросе Са++ начинается скольжение тонких и толстых протофибрилл относительно друг друга. Считается, что непосредственной причиной этого движения протофибрилл является активизация актомиозиновых мостиков, которые либо изменяют угол наклона, либо подвергаются торсионному скручиванию (рис. 5.12).

Установлена АТФ-азная зависимость конформационных изменений актомиозиновых мостиков. В отсутствие АТФ эти изменения невозможны, т. е. процесс скольжения протофибрилл не происходит.

Следует подчеркнуть исключительно важную роль ионов кальция в этом процессе, который не только влияет на конформационные изменения актомиозина, но и является активатором АТФ-азы. Более того, процесс расслабления мышцы зависит от Са++. Актиновые и миозиновые нити не возвращаются в исходное положение до тех пор, пока не произойдет обратное поглощение ионов кальция мембраной цитоплазматического ретикулума или мембраной сарколеммы (в гладких мышцах), причем это обратное движение кальция зависит от активности АТФ-азы соответствующего мембранного комплекса. Поэтому не только сокращение, но и расслабление мышцы протекает с затратами энергии.

Эксперименты показали, что АТФ-азную активность проявляет сам белок миозин. Он же при наличии АТФ способен соединяться с актином. Причем АТФ-азная часть миозина активируется ктином. Однако белок тропонин в составе актиновой нити блокирует эту активность. И только выброс Са++ снимает тормозящее действие тропонина. Поэтому тропонин-тропомиозиновую систему рассматривают как предохранительный механизм взаимодействия актиновых и миозиновых нитей в состоянии физиологического покоя.

Механизм укорочения гладкомышечного волокна менее понятен. Распространена точка зрения, согласно которой укорочение гладкомышечного волокна есть результат конформационного изменения актомиозинового комплекса. Белок актомиозин выделен из гладких мышц многих животных, включая рыб. По своим свойствам он близок к миозину млекопитающих. Как актиновая, так и миозиновая молекула имеют фибриллярную спиралевидную часть. Активизация актомиозина приводит к изменению конфор- мации молекулы белка с соответствующим изменением его про­странственного внутрицеллюлярного положения. Это и приводит к общему укорочению мышечного волокна, так как актомиозино- вые структуры морфологически связаны с сарколеммой гладкомышечного волокна.

Нервная регуляция гладкомышечной активности у рыб довольно специфична и заслуживает специального обсуждения. Влияние нервной системы на гладкие мышцы может быть как возбуждающим, так и тормозящим. Характер нервной стимуляции гладких мышц существенно зависит от гормонального статуса рыб и функционального состояния самого висцерального органа (например, степени наполнения желудка, мочеточников, стадии созревания половых клеток в ястыке и их наличия в матке или яйцеводе и т. д.).

Гладкая мускулатура иннервируется симпатическим и парасимпатическим отделами нервной системы. Кроме того, многие висцеральные органы (например, желудочно-кишечный тракт, крупные сосуды) обладают собственной интрамуральной нервной системой в виде нервных сплетении разной степени сложности.

Как правило, симпатические нервные волокна в качестве медиаторов выделяют норадреналин, а парасимпатические волокна - соответственно ацетилхолин. Однако исследования показали, что в составе парасимпатической системы есть адренергические, а в составе симпатической системы — холинергические волокна. Поэтому у рыб симпатическая и парасимпатическая нервные системы являются смешанными по функциональным признакам. У ацетилхолина имеется два типа рецепторов – мускариновые и никотиновые. Для норадреналина описано также два функциональных типа рецепторов, называемых а- и (3-рецепторами.

Стимуляция вагуса как представителя парасимпатической части нервной системы у рыб вызывает различные эффекты не только по отношению к различным физиологическим системам, но и в пределах одной системы. Так, у форели и других желудочных рыб вагус тормозит работу желудка. Возбуждающему эффекту желудок подвергается при стимуляции чревного нерва.

Далее желудка (кишечник) влияние симпатической и парасимпатической систем изменяется на прямо противоположное. Адренергические волокна и адреналин оказывают тормозящее действие, а холинергические волокна и ацетилхолин стимулиру­ют перистальтику кишечника. Интересно и то, что ацетилхолин возбуждает все отделы кишечника у рыб. Адреналин же возбуждает только желудок и оказывает тормозящее действие на весь кишечник.

У некоторых рыб пищеварительная трубка содержит элементы поперечнополосатой мускулатуры. Например, у линя кишка покрыта своеобразным чехлом подобных мышц. Поэтому его кишечник одинаково отвечает как на электрическую, так и на гуморальную стимуляцию.

Кроме плавания и висцеральных функций мышцы обеспечивают и некоторые довольно специфичные движения рыб. Так, таиландский ходячий сом в составе грудных плавников имеет шипы- ходули, которыми он пользуется для переползания по суше из одного водоема в другой. Наличие таких ходуль и приспособленность к дыханию атмосферным воздухом (имеет хорошо развитую систему наджаберных полостей) позволяют этой рыбе преодолевать в период засухи довольно большие расстояния в поисках воды.

Правда, при движении по суше (точнее сказать грязи, так как рыба для передвижения все-таки выбирает увлажненные места), сом использует не только грудные плавники-ходули, но и при вытянутом теле, извиваясь подобно змее, облегчает работу мышц плавников. Эта особенность таиландского сома позволила ему освоить большие территории на юге США, куда он случайно попал из Азии.

Морской петух тригла также ползает по дну, но при этом опирается сразу на три луча грудных плавников (отсюда и его название «тригла»). Интересно, что эти ходильные лучи у петуха обособлены от других и способны сгибаться. Кроме движения по дну видоизмененные лучи грудных плавников обеспечивают этой рыбе тактильную рецепцию.

В других случаях рыбы используют грудные плавники для планирования в воздухе. Так, летучие рыбы при испуге за счет броскового движения туловищных мышц, мышц хвостового стебля и интенсивной работы нижней лопастью хвостового плавника выскакивают из воды и пролетают в воздухе расстояния, позволяющие им избавиться от преследователей (рис. 5.14).

На поверхности воды летучая рыба достаточно продолжительно работает хвостом, развивая большую тягу, позволяющую ей преодолеть силу притяжения. Скорость полета этих мелких рыб превышает скорость движения преследователей (тунцы, меч-рыба), а пролетаемые ими расстояния достигают нескольких сотен метров.

Другие виды рыб, например пальцекрыл, могут не только парить, но и выполнять сложные маневры в воздухе. Пальцекрыл поднимается к поверхности воды и скользит по ней со скоростью 18 м/с. Такую высокую скорость рыба приобретает благодаря зигзагообразным движениям хвостового плавника с гипертрофированной нижней лопастью.