- •11.Высшая и низшая теплота сгорания топлив. Понятие о их использовании в котлах. Понятие об условном топливе.
- •15.Назначение оборудования дробильного отделения.
- •16.Зерновая характеристика угольной пыли, её определение.
- •17.Наиболее важные характеристики угольной пыли, конечная влажность и взрываемость её.
- •18.Конструкция, назначение и классификация шбм.
- •19. Назначение, конструкция и принципы действия мвс.
- •20. Конструкция, назначение и классификация мм и мв.
- •21. Сепараторы пыли, назначение, конструкция и применение.
- •24.Индивидуальная схема пылеприготовления, замкнутая, с прямым вдуванием, её применение.
- •25. Индивидуальная схема пылеприготовления, замкнута, с промежуточным бункером готовой пыли, её применение.
- •26.Индивидуальная разомкнутая схема пылеприготовления, её применение.
- •28. Назначение и устройство резервуаров и мазутонасосной.
- •29.Назначение, оборудование и принцип действия грп.
- •30. Оборудование и принцип действия газового хозяйства котельного цеха.
- •35.Энтальпии воздуха и продуктов сгорания. H-q диограмма для котлов под разряжением и под наддувом.
- •48.Горелочные устройства для сжигания мазута, конструкции, регулирование паропроизводительности.
- •49.Организация сжигания природного газа, параметры газовых горелок. Комбинированные горелки.
- •50.Режимы течения пароводяного тракта в трубных элементах котла.
- •56.Расчёт простого контура циркуляции.
- •57.Источники загрязнения питательной воды и их влияние на работу оборудования.
- •60.Ступеньчатое испарение как один из эффективных методов сжигания концентрации примесей в воде и паре.
- •61.Методы вывода примесей из цикла станции и водный режим котлов.
- •62.Топочные экраны, назначение, конструкции, размещение, крепление.
- •63.Пароперегреватели, назначение, виды, схемы включения, размещение.
- •64.Компоновки пароперегревателей.
- •65.Паровое регулирование температуры перегрева пара.
- •98.Дымовые трубы, назначение, конструкция, выбор высоты.
- •99.Сокращение водных выбросов тэс в водоёмы.
- •100.Классификация тэс по назначению, их типы, простейшие тепловые схемы.
63.Пароперегреватели, назначение, виды, схемы включения, размещение.
Пароперегреватель предназначен для перегрева поступающего в него насыщенного пара до заданной температуры. Он является одним из наиболее ответственным элементов котла, так как тем-а пара здесь достигает наибольших значений и металл перегревателя работает в условиях, близких к предельно допустимым.
Конвективные пароперегреватели (в конвективных газохода котла), радиационные (на стенах и потолке топочной камеры и горизонтального газохода), полурадиационные ширмовые (в верхней части топки на входе в горизонтальный газоход).
Конвективный (противоточная схема движения пара, прямоточная, смешанная).
64.Компоновки пароперегревателей.
Современные пароперегреватели выполняют комбинированными, они включают в себя все три вида конструкций (радиационный, полурадиационный, конвективный).
В барабанных котлах с давлением 14мПа и температурой пара 560 перегреватель состоит из радиационной, конвективной и ширмовой частей. Ширмовый перегреватель размещён на выходе из топки до подвесных труб заднего экрана.
Первый (холодный) конвективный пакет включен по пару за потолочным перегревателем и имеет ещё достаточно низкую t пара. Выходной конвективный пакет перегревателя располагается в зоне достаточно высоких t газов, что сохраняет необходимый температурный напор.
В паровых котлах того же P, но сниженной тем-ы до 545 ширмовый перегреватель включен после радиационного и при отсутствии настенной панели радиационного перегревателя получает пар достаточно низкой t, что повышает надёжность металла труб, образующих ширмы. Выходной пакет размещают в верхней части конвективной шахты с горизонтальными змеевиками и с опорой на подвесных трубах
65.Паровое регулирование температуры перегрева пара.
Паровое регулирование t первичного пара осуществляют с помощью впрыскивающего пароохладителя, который основан на использовании падения энтальпии пара за счёт отдачи части тепла, вводимой в поток пара воды. Для этого способа в барабанных котлах вводят собственный конденсат, получаемый в конденсаторе собственных нужд котла, а для прямоточных котлов питательную воду. Впрыскивающий пароохладитель представляет собой выделенный за газоходом котла участок трубы, длиной 5-7 м и более, внутри которой устанавливают тонкостенную трубу, наз. паровой рубашкой. Ввод воды осуществляют через форсунки распылители, выполненные в виде металличсекой трубы вводимого поперёк паропровода и имеющей несколько калиброванных отверстий.
Вторым способом парового регулирования является регулирование t пром пара с использованием паровых теплообменников. При этом способе перед входной ступенью первичного п.п. у станавливают У образный теплообменник в виде трубы.
66.Методы газового регулирования температуры перегрева пара.
Осуществляется только для регулирования t пром пара следующими способами:
1.Установкой выделенных (2-3) газоходов в опускном газоходе, в которых могут размещать поверхности нагрева пром перегрева и эк и под газоходами устанавливать n шиберов, которые могут открывать или перекрывать сечение газоходов и тем самым увеличивать или уменьшать пропуск уходящих газов, а значит увеличивать или уменьшать температурный напор.
2.Рецеркуляция продуктов сгорания. При этом способе из опускной шахты в топку возвращается часть газов, что создаёт условие повышения суммарного Vг в топке, рост скоростного и температурного напора в конвективном газоходе, а значит изменение t особенно у пром пара , т.к. у него низкие P
3.Установка выделенных газоходов и подключение к каждому своего дымососа, с установкой в каждом газоходе пром п.п. и эк. В данном случае количественный пропуск газов, а значит и температурный напор осуществляют за счёт изменения производительности дымососов.
4.Установка многоярусных горелок. Регулирование этим способом осуществляют за счёт переключения нижних и верхних ярусов, что создаёт условие понижения и повышения температуры газов на выходе из топки.
5.Установка поворотных горелок и горелок, имеющих разные схемы направлений вращения, потоков, газов.
67.
68.
69.
70.
71.
72.
73.
74.
75. Расчёт на прочность цилиндрических поверхностей котла.
Расчет на прочность цилиндрической части барабана.
Расчет проводят по формулам, по заданным D и Р с учетом Сигма_дом (табл 11-6):
1. Дельта=(P*Dв)/(2*Фи*Сигма_доп-Р)+с
2. Дельта=(Р*Dн)/(2*Фи*Сигма_доп+Р)+с, где
Дельта - толщина в метрах
Дв, Дн - соотв внутренний и внешний диаметры элементов
Фи - коэф прочности элемента, учитывающий его ослабление в результате сверлений и наличия продольного шва.
Сигма_доп - допустимое напряжение, которое учитывает материал, из которого изготовлен элемент и его температуру (стенки)
Р - избыточное давление
с - прибавка к толщине стенки элемента, учитывающая его ослабление за счет утонения в местах гиба, на окалинообразование (ржавчина) в течение расчетного срока эксплуатации.
-=коэф Фи определяют, исходя из учета значительного кол-ва сверлений, необходимых для присоединения трубных элементов и с учетом их расположения:
1) при продольном расположении сверлений: Фи=t-d/t
2) при поперечном расположении сверлений: Фи=t1-d/t1
3) при диагональном расположении: Фи=(1-d/a*Корень(1+m^2))/Корень(1-0,75*(m^2/1+m^2)^2).
76. Расчёт на прочность днищ барабана.
Днища барабанов с торцов заделываются элептическими конструкциями в виде: элептически глухих, элептических с лазовым отверстием и стенками разной толщины. Минимальная высота днища не должна быть менее 0,2dв. В случаях, когда эту величину увеличивают до 0,3 dв, то расчёт толщины днища производят по выражению:
Дельта=PDв/4ZGдоп-P*Dв/2Пд+С, где Z- коэффициент учитывающий ослабление днища пазом с учётом наибольшего диаметра отверстия. Коэ-т Z определяется:
А) При отношении d/кореньDв(S-C)<=0.4 Z=1/
Б) При этом отношении от 0.4 до 2: Z=2/1/25*d/кореньPв(S-C)+1/5.
В) При этом отношении >=2: Z=2/1/25*d/кореньPв(S-C) +2.
Добавка к толщине стенки С у днищ определяется из условия, что С=0.05(S-C).
77.Компоновки котла, схемы применение.
Компоновкой называют взаимное расположение газоходов котла и расположение в них поверхностей нагрева с их коммуникацией. Различают П-образную, Т-образную, башенную, 4-ходовую, U-образную, N-образную.
-=П-образная - применяется для любых видов сжигаемых топлив. Наиболее распространена, т.к. обладает следующими преимуществами. К ним относят:
1)нижнее расположение ТДУ
2)короткие комуникации по газу
3)удобная подача топлива
4)более компактна строительная часть.
Однако имеет и отрицательные стороны:
1)из-за наличия поворотов и опускного газохода увеличивается аэросопротивление и возникает антисамотяга, а также значительные комуникации по паровому тракту (длинные паропроводы к турбине).
-=Т-образная - применяется только для сжигания твердых топлив, обладающих высокообразивными золами (но не в большом кол-ве). В таких компоновках установка дополнительных конвективных зон позволяет, деля поток газа на 2 подпотока уменьшить концентрацию золы, и уменьшая воздействие ее на поверхности нагрева, и кроме того, дополнительные газоходы позволяют разрядить (увеличить шаг) в конвективных поверхностях ПП и ЭК. В основном положительные и отрицательные стороны аналогичны П-образной , но она сложнее и требует дополнительного расходы металлоконструкции на 12-15%.
-=4-ходовая - используется для сжигания только твердых топлив, обладающих повышенным содержанием золы (легкоплавкая, но необладающая высокими образивными св-вами). Характерной особенностью ее является наличие промежуточных (двух) конвективных газоходов, что позволяет ещё больше разрядить и разместить конвективные поверхности нагрева, уменьшая зашлаковку и отложения (плюсы и минусы - см п- и Т-образную).
-=Башенная - может использоваться для любых видов топлив и обладает значительными преимуществами в аэродинамике, минимальной площадью сечения в плане, хорошее заполнение газами объемов газохода, т.е. равномерно распределение, минимальное аэросопротивление. Однако, при такой компоновке, высота котла может достигать значительной высоты, что приводит к трудности в строительной части, размещению и закреплению конвективных поверхностей на большой высоте и там же установки ТДУ и кроме того растут комуникации паро-водо-воздухопроводов и сложность в очистке поверхностей и внешних отложений. Применяются редко.
-=U-образная - такая компоновка может использоваться для любых видов топлив, и, по сравнению с П-образной, в ней аэродинамика лучше, но все остальные компоненты хуже (кроме коротких паропроводов). Особого распространения не получила.
-=N-образная - такая компоновка используется только для сжигания твердых топлив и является промежуточной между Т и 4-ходовой. При сжигании высокоугольных с образивными св-вами тв топлива (+ и - см предыдущие). Не распространены.
78.Каркасы паровых котлов, назначение, конструкции.
Каркас представляет собой пространственную металлическую конструкцию, предназначенную для установки и закрепления всех элементов парового котла: барабана, поверхностей нагрева и коллекторов, обмуровки, изоляции и обшивки, трубопроводов и коробов, помостов и лестниц обслуживания.
Каркас состоит из вертикальных колонн и стоек, горизонтальных ферм, опорных балок и соединительных горизонтальных и диагональных связей.
Число колонн зависит от мощности агрегата. Вспомогательные стойки и горизонтальные балки имеют меньшее сечение и служат для придания каркасу большей жёсткости.
79.
80.
81.
82.
83. Радиальные (центробежные ) ТДУ, конструкция, применение КПД, регулирование нагрузки.
Тягодутьевые машины должны обеспечивать номинальную нагрузку парового котла и при этом иметь высокую экономичность, эффективно работать на частичных нагрузках, отличаться высокой надёжностью в работе, компактностью размеров и быстроходностью вращения при умеренном шуме.
КПД центробежных ТДУ 82-87%.
84.
85.
86.
87.
88. Золоуловители, назначение, КПД, конструкция, применение.
ЗУ предназначены для вывода из продуктов сгорания летучей золы (и несгоревших частическ тв топлива)
КПД ЗУ согласно нормам технологического проектирования ТЭС должно соответствовать мощности ТЭС и определятся след зависимостями:
ГРЭС: >=2400МВт - >=99%; 1000-2400МВт - >=98%; 500-1000МВт - >=96%; <500МВт - >=93%
ТЭЦ: >=500МВт - >=99,5%; 300-500МВт - >=99%; 150-300МВт - >=98%; <150МВт - >=96%
Инерционные представляют собой циклоны или БЦУ, где используют инерционные силы раскрутки и отброса золы к стенкам ЗУ, их торможения и выведения из газов. КПД отдельных ЗУ-80-90%, а БЦУ-93%.
89.
90.
91.
92.Регулирующая и запорная арматура, назначение, конструкция, применение.
Арматурой называют находящиеся под рабочим давлением оборудование и служ. для управления котлом, и протекающими в нем процессами.
Запорную (предназначена для периодического, герметического отключения одних участков трубопровода от других или их выключения)
Регулирующая - для изменения или поддержания расхода рабочих сред в соответствии с требованиями по P, t. w и уровнем.
93.
94.Высоконапорные котлы, конструктивные особенности и применение.
ВПГ - высоконапорный парогенератор. Используется на комбинированных ТЭС, где используют газовый цикл с установкой ГТ и паровой цикл. При этом КПД установки повышает КПД ПГУ на 5-6% по сранению с паротурбинными ТЭС.
Конструктивно ВПГ в плане выполняется круглого или близкого к круглому профиля с плавными переходами по газоходам, чтобы обеспечить минимальные аэросопротивления и выдержать повышенные Р по газам, которые составляют до 0.6 МПа. Создание такого Р осуществляется за счет ввода воздуха, сжатого в компрессоре, причем в ВПГ отсутствуют ВП, т.к. первой ступеню нагрева воздуха является сам компрессор (сжатия), а 2-ой ступенью подогрева является кольцевой канал между внутренней оболочкой ВПГ (т.е. воздух нагревается от стен ВПГ), причем давление воздуха в этом канале исключает выброс газов из газоходов, т.к. его давление выше 0.6МПа. В дальнейшем весь паровой цикл аналогичен паровому барабанному котлу, но газы, имея высокие т и Р (при отсутствии ВП), сбрасывают не в дымовую трубу, а в ГТ, где дополнительно вырабатывают эл энергию, причем на выходе из ГТ можно устанавливать теплообменник с дополнительным отбором тепла, кондленсатом или пит водой.
95. Комбинированные ПГУ.
Однако при работе ВПГ в цикле ПГУ имеет существенный недостаток - выход из строя любого из циклов (парового или газового) приводит к останову всей станции, что не всегда выгодно, поэтому наиболее эфективными ПГУ являются станции с выделенными контурами ГТ и ПТ.
Рассмотрим одну из схем использования газового и парового циклов с подключением парового котла по газовому циклу:
1. компрессор
2. камера сгорания
3. подача топлива
4. ГТ
5. дутьевой вентилятор
6. регенератор
7. паровая турбина
В данной схеме ГТУ сохраняется тот же КПД, но контур газовой турбины и паровой могут работать независимо друг от друга, т.е. при выходе из строя оборудования одного из контуров, и его отключении может не вызывать отключение другого. В данной схеме работа газового контура следующая. От К сжатый воздух с Альфа = 4-5 и более подается в камеру сгорания, куда также вводят топливо и продукты сгорания после сжигания топлива сбрасывают в ГТ. За ГТ газы (со значительным содержанием воздуха и с высоким t=500-600) подаются через горелки в паровой котел, с получением в нем пара, но с отключенным ВП, что позволяет выводить газы с повышенным Тетта ух. г., а значит и их утилизацией тепла в регенераторах (теплообменниках), которые можно подключать как по нитке пит воды, сетевой воды или технической для ХВО. Как видно из схемы такое подключение ГТ к паровому котлу может обеспечить ускоренную растопку парового котла при остановке, за счет интенсивного прогрева газоходов и поверхностей нагрева газами от ГТ.
96.Котлы для полупиковой и пиковой нагрузок, их назначение и особенности нагрузок.
В условия, при покрытии длинных перегрузочных режимов, создают специальные полупиковые энергоблоки большой мощности, которые можно вводить в работу за минимальное время и которые взяли бы на себя обеспечение переменной по нагрузкам части электрического графика.
97.Сокращение вредных выбросов в атмосферу с территории ТЭС.
Основными способами снижения сернистых соединений, выбрасываемых в атмосферу, являются очистка нефтяного топлива от серы на нефтеперерабатывающих заводах с целью получения малосернистого мазута, глубокая переработка жидкого и твёрдого топлив на ИЭС с получением газообразного топлива и последующей его очисткой от сернистых соединений, очистка дымовых газов после паровых котлов от оксидов серы.
Способы подавления образования оксидов азота в топках котлов:
Уменьшение избытка воздуха в топке до минимального по условиям полного сгорания топлива, понижение температуры подогрева воздуха поступающего в топку, рециркуляция дымовых газов в топку, применение двух ступенчатого горения, снижение теплового напряжения в топке, увеличение степени экранирования с применением двусветных экранов, установка специальных горелок, применение топок с гранулированных шлакоудалением, впрыск воды на начальной стадии образования факела.
