- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Степенные ряды. Задание 24. Найти радиус и интервал сходимости степенного ряда и исследовать сходимость на его границах. А) хn , б) (х - 4)n Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости.
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 11. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 4. Прямая и плоскость.
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическоеожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Степенные ряды.
- •Операционное исчисление.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 4. Прямая и плоскость.
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 11. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
2. Вычислить неопределенный интеграл в заданиях д, е.
3.Вычислить определенный интеграл в задании ж.
а)
б) 5/3
dx
в)
г)
dx
д)
е)
ж)
Задание 11. Площадь фигуры.
С помощью определенного интеграла вычислить площадь фигуры, ограниченной линиями. Сделать чертеж: а) х + у –3 = 0, х – у +3 = 0, у = 0, б) у = х3 + 1, х = -1, у = х -3, х = 2.
Задание 12. ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА.
Вычислить
приближенное значение определенного
интеграла с помощью формулы Симпсона,
разбив отрезок на 10 частей, с точностью
до 0,001:
dx
Дифференциальное и интегральное исчисление функций нескольких переменных.
Задание
13. Найти
область определения функции и изобразить
ее:
Задание
14. Дана
функция z
= f(x;y).
Найти:
,
,
,
,
:
z
=
Задание 15. Дана функция z = f(x;y), точка М( х ; y ) и вектор = {х ;у }. Найти:
а) производную в точке М по направлению вектора ; б) grad z в точке М.
z = xy – x2y – xy2; М( -1; 2) и вектор = {4;-3}.
Задание 16. Найти точки экстремума функции f(x) = 2x2 + 2xy +2 y2 +2 x + 4y -3
Задание 17. Составить уравнение касательной плоскости и нормали к поверхности в точке С(х ;y ;z ): z = 3x + 6y –xy + y2 –x2, С(1;-1;z )
Задание 18. Комплексные числа. а) Построить числа на комплексной плоскости:
z1 = - 1 + 7i, z2 = 7 + 4i, z3 = 2i, z4 = -2, z5 = - 4 – 5i, z6 = 7 – 3i
б) Выполнить действия:1) Z1+Z2 2) Z1-Z2 3) Z1´ Z2 4) Z1 : Z2, если Z1 = - 8 + 2i, Z2 = 5 + 3i
в) Записать комплексное число в тригонометрической и показательной форме: Z = - 1/2 - /2i
г)
Записать комплексное число в алгебраической
форме: Z1=
4
, Z2=
6( cos
p/4+
i
sin
p/4)
Задание 19. Найти частные решения линейных дифференциальных уравнений.
(2 –x)dy – (y + 1)dx = 0, если у = 3 при х = 2;
Задание 20. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
ВТОРОГО ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ.
а) Найти общее решение: 1) у² -4у = 0 2) у²+4у¢+4у =0 3) у²+2у¢+5у = 0
б) Найти частное решение: 1. у² -3у¢ = 0, если у =1, у¢= -1, при х = 0
2. у²+6у¢+9у = 0, если у =2, у¢=1, при х =0
Двойные интегралы.
Задание 21. Изменить порядок интегрирования в двойном интеграле. Сделать чертеж.
Задание 22. Вычислить двойные интегралы по указанным прямоугольникам D:
;
2 £
x
£
6, 0£
y
£
1
Задание 23. РЯДЫ.
1. Написать первые пять членов ряда по заданному общему члену.
Найти формулу общего члена ряда.
Установить сходимость ряда с помощью следствия из необходимого признака.
Используя признак Даламбера, исследовать на сходимость ряд.
Исследовать ряд на сходимость по признаку Лейбница.
1.
а) an
=
;
б) аn
=
2.
а)
1+
+
+
+…
б) 5 +25 +125+…
3.
4. а)
б)
5. а)
(-1)
б) 1-
+
-
+…
Степенные
ряды. Задание 24. Найти радиус и
интервал сходимости степенного ряда и
исследовать сходимость на его границах.
а)
хn
, б)
(х +3)n
Операционное исчисление.
Задание
25. Найти
изображение функций.
1.
2.
3.
4.
5.
Задание
26. Найти
оригинал функции. .
Задание 27.
В ящике содержится 7 - синих и 8 - красных шаров. Случайным образом вынимают 4 шаров. Найти вероятность того, что среди них имеются: а) 3 - красных шаров; б) меньше, чем 3, красных шаров; в) хотя бы один красный шар.
Задание 28. На телефонной станции отключение происходит с вероятностью 0,35. Найти вероятность того, что при 9 соединений имеет место 4 отключений.
Задание 29. Для закона распределения дискретной случайной величины Х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
хi |
21 |
25 |
27 |
31 |
pi |
0,2 |
0,25 |
0,15 |
0,4 |
Методические указания по выполнению контрольной работы.
Цель контрольной работы: закрепить теоретические знания для решения практических задач, рассмотреть вопросы, оставленные для самостоятельного изучения, приобрести практические навыки.
Работа выполняется в тетради от руки или на стандартных листах на компьютере.
При выполнении контрольной работы следует соблюдать следующие требования:
указать номер варианта;
в решении задач указывать формулы и их расшифровку;
расчеты должны быть теоретически обоснованы, содержать пояснения и выводы;
работа должна содержать титульный лист, задания, решение, заключение (ответ).
Контрольная работа № 1: с задания 1 по 5.
Контрольная работа № 2: с задания 6 по 12.
Контрольная работа №3: с задания 13 по 20.
Контрольная работа №4: с задания 21 по 29.
Вариант 5.
Задание1.1. ОПРЕДЕЛИТЕЛИ. Вычислить определители:
