- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Степенные ряды. Задание 24. Найти радиус и интервал сходимости степенного ряда и исследовать сходимость на его границах. А) хn , б) (х - 4)n Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости.
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 11. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 4. Прямая и плоскость.
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическоеожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Степенные ряды.
- •Операционное исчисление.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 4. Прямая и плоскость.
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 11. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- •Задание 2. Системы уравнений.
- •Задание 3. Прямая на плоскости
- •Задание 6. Предел функции.
- •1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
- •2. Вычислить неопределенный интеграл в заданиях д, е.
- •3.Вычислить определенный интеграл в задании ж.
- •Дифференциальное и интегральное исчисление функций нескольких переменных.
- •Двойные интегралы.
- •Операционное исчисление.
- •Задание 29. Для закона распределения дискретной случайной величины х найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
Задание 6. Предел функции.
6.1.
Вычислить предел функции при х
х
:f(x)
=
а) х
=
-2; б) х
=
-1; в) х
=
.
6.2.
Вычислить предел функции при х
х
:
f(x)
=
х
=
9.
6.3. Вычислить предел функции при х 0: f(x) = x·ctg3x.
6.4.
Вычислить
предел функции при х
:
f (x) =
Задание 7. Найти производные функций:
а)
у =
,
б) у =
,
в) у = sin
4x
· e
,
г) y
= arcsin
ln
x.
Задание 8. Применение производной.
а) Составить уравнения касательной и нормали к графику кривой у = 2х2 - 5х +1 в точке, с абсциссой x0 = -2.
б) Найти максимальную скорость, если точка движется по закону S(t) = - t3+ 24t2 +8t - 1в) Найти наибольшее и наименьшее значения функции f(x) = x3 - 18x2 + 81x + 2 на -1; 10
Задание 9. ИССЛЕДОВАНИЕ ФУНКЦИИ.
Исследовать данные функции методом дифференциального исчисления и построить их графики:
а)
у = -1/3х
+х
+6 б) у =
Задание 10. Интегральное исчисление.
1.Найти неопределенный интеграл, проверить результат дифференцированием в заданиях а, б, в, г.
2. Вычислить неопределенный интеграл в заданиях д, е.
3.Вычислить определенный интеграл в задании ж.
а)
б)11/5
в)
г)
dx
д)
е)
ж)
Задание 11. Площадь фигуры.
С помощью определенного интеграла вычислить площадь фигуры, ограниченной линиями. Сделать чертеж: а) 3х + 7у – 18 = 0, 3х – 2у + 9 = 0, у = 0. б) у = х3 -2, у = х - 6, х = 0, х = 2.
Задание 12. ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА.
Вычислить
приближенное значение определенного
интеграла с помощью формулы Симпсона,
разбив отрезок на 10 частей, с точностью
до 0,001:
dx
Дифференциальное и интегральное исчисление функций нескольких переменных.
Задание
13. Найти
область определения функции и изобразить
ее:
Задание
14. Дана
функция z
= f(x;y).
Найти:
,
,
,
,
:
z
=
Задание 15. Дана функция z = f(x;y), точка М( х ; y ) и вектор = {х ;у }. Найти:
а) производную в точке М по направлению вектора ; б) grad z в точке М.
z = у2 + х2 +xy; М( 1; 1) и вектор = {2;-1}.
Задание 16. Найти точки экстремума функции f(x) = - x2 - 2xy - 3y2 - 6x - 6y + 5
Задание 17. Составить уравнение касательной плоскости и нормали к поверхности в точке С(х ;y ;z ): z = xy + 2y - 2x; С(1;2;z )
Задание 18. Комплексные числа. а) Построить числа на комплексной плоскости: z1 = - 3 + 5i,
z2 = 2 + 7i, z3 = - 8i, z4 = -5, z5 = - 1 – 5i, z6 = 2 – 3i
б) Выполнить действия:1) Z1+Z2 2) Z1-Z2 3) Z1´ Z2 4) Z1 : Z2, если Z1 =-7+2i, Z2 = -6+8i
в) Записать комплексное число в тригонометрической и показательной форме: Z = /2-1/2 i
г) Записать комплексное число в алгебраической форме: Z1= e p/4i , Z2= 2(cos2p+i sin2p)
Задание 11. Найти частные решения линейных дифференциальных уравнений.
(x2 + 1)dy = xydx, если у = 2 при х = ;
Задание 20. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
ВТОРОГО ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ.
а) Найти общее решение: 1) у²-4у¢ -12у = 0 2) у² +10у¢+25у =0 3) у² -2у¢+5у = 0
б) Найти частное решение: 1. у² +3у¢ = 0, если у =1, у¢= -1, при х = 0
2. у²-6у¢+9у = 0, если у =2, у=¢1, при х =0
