Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Готовые для печати шпоры1-6,8-10.docx
Скачиваний:
36
Добавлен:
01.04.2025
Размер:
642.46 Кб
Скачать

6. Понятие волн де Бройля...

В 1927 г. Луи де Бройль высказал предположение, что каждой движущейся частицы, мы можем поставить в соответствие некоторую длину волны. Подобную волну назвали в последствии волной де Бройля. Установим связь между параметрами волны и движущейся частицы.

  1. Для волны де Бройля, как и для любой другой электромагнитной волны, мы можем записать: (1). С другой стороны, для импульса: ; , где - волновой вектор. Но для волнового вектора мы можем записать: , т. о. ; . Из последней формулы следует выражение для волны де Бройля: (2). Из этого выражения следует интересный вывод, касающийся распределения интенсивностей в опытах с дифракцией электронов. Изменяя приложенную разгоняющую разность потенциалов, мы изменяем длину волны де Бройля. Когда выполняется условие Вульфа – Брэгга, возникает максимум.

  2. О пределим теперь фазовый вид волн де Бройля. Введём некоторые дополнительные определения. Фазовой скоростью называют скорость, Vф с которой перемещается в пространстве фаза плоской монохроматической волны , где (3). Другими словами, фазовая скорость – это скорость распространения точки постоянной фазы волны. Найдём эту скорость. Рассмотрим для этого выражение (3). Это уравнение чисто геометрически описывает плоскость, перпендикулярную к оси , на которой постоянна фаза волны. Таким образом, эта плоскость является как бы траекторией движения точки постоянной фазы. Поэтому, чтобы найти её скорость, необходимо взять производную от (3) по времени. Получим: , так как производная от константы будет ноль. Отсюда найдётся и фазовая скорость: . Это соотношение определяет как раз фазовую скорость. Найдём некоторые свойства фазовой скорости. Возвращаясь к уравнениям и , выразим из них и : и . Основываясь на определении фазовой скорости и полученных выражениях, найдём другую форму записи для неё: . Здесь – фазовая скорость волны, соответствующей частице; – скорость самой частицы; – скорость света. Таким образом, как видно из полученной формулы, фазовая скорость будет больше скорости света, однако никакого противоречия с теорией относительности это не вызывает. Очевидно, что фазовая скорость не измерима в эксперименте. Измерить можно лишь так называемую групповую скорость.

  3. Групповой скоростью называют величину, приближённо характеризующую распространение негармонической волны (которая является суперпозицией группы гармонических волн). Если форма волны изменяется в результате дисперсии волн в среде не очень быстро, то можно рассматривать распространение негармонической волны как целого с групповой скоростью, отличной от фазовых скоростей её гармонических составляющих. Групповая скорость характеризует скорость переноса энергии волной. По определению для групповой скорости мы можем записать: (отсюда сразу становится понятным условие, ограничивающее скорость изменения ). Возвращаясь к соотношениям, полученным для фазовой скорости, получим: . Таким образом, .

  4. Если волны распространяются в недиспрегирующей среде (фазовая скорость не зависит от частоты), то групповая скорость равна скорости движения частицы . Тогда, вспоминая выражение для фазовой скорости , мы можем записать: . Из последней формулы следует: .

И так, мы установили, как связаны свойства частиц и волн де Бройля. Оценим теперь длину волны де Бройля. В опытах Девисона – Джермера ускоряющая разность потенциалов была: 100В. Тогда для энергии электрона имеем выражение: Ee=eU. С другой стороны, кинетическая энергия электрона . На основании закона сохранения энергии необходимо положить или . Так как импульс электрона будет , то , то есть . Отсюда . Так как , то . Оценивая численное значение , мы можем получить, что Å.