
- •Предмет физики. Методы физического исследования: опыт, гипотеза.
- •2. Механическое движение как простейшая форма движения материи.
- •3. Элементы кинематики материальной точки.
- •4. Инерциальные системы отсчета. Динамика материальной точки и поступательного движения твердого тела.
- •5. Законы динамики материальной точки и системы материальных точек.
- •8. Энергия. Кинетическая энергия механической системы.
- •9. Теорема об изменении кинетической энергии. Работа переменной силы. Мощность.
- •10.Поле как форма материи. Понятие о градиенте скалярной функции координат.
- •11. Потенциальная энергия материальной точки во внешнем силовом поле и ее связь с силой, действующей на материальную точку. Потенциальная энергия системы.
- •12. Закон сохранения механической энергии. Диссипация энергии. Применение законов сохранения к столкновению упругих и неупругих тел. Энергия деформации.
- •13. Преобразования Галилея. Постулаты специальной теории относительности.
- •14. Преобразования Лоренца. Относительность длин и промежутков времени.
- •15. Интервал между событиями и его инвариантность по отношению к выбору инерциальной системы отсчета как проявление взаимосвязи пространства и времени.
- •16. Релятивистский закон сложения скоростей. Релятивистский импульс. Основной закон релятивистской динамики материальной точки.
- •17. Релятивистское выражение для кинетической энергии. Взаимосвязь массы и энергии. Соотношение между полной энергией и импульсом частицы.
- •18. Элементы кинематики вращательного движения. Угловая скорость и угловое ускорение, их связь с линейными скоростями и ускорениями точек вращающегося тела.
- •19. Момент силы относительно оси. Теорема Гюйгенса-Штейнера.
- •20. Уравнение динамики вращательного движения твердого тела относительно неподвижной оси. Кинетическая энергия вращающегося тела.
- •21. Закон сохранения момента импульса вращательного движения твердого тела и его связь с изотропностью пространства.
- •22. Неинерциальные системы отсчета. Силы инерции.
- •23. Гармонические механические колебания. Энергия гармонических колебаний.
- •24. Дифференциальное уравнение гармонических колебаний. Маятники.
- •25. Сложение гармонических колебаний. Биения.
- •26. Дифференциальное уравнение затухающих колебаний и его решение. Дифференциальное уравнение вынужденных колебаний и его решение.
- •27. Амплитуда и фаза вынужденных колебаний. Понятие о резонансе.
- •28. Свойства жидкостей и газов. Уравнения движения жидкости. Идеальная и вязкая жидкости. Гидростатика несжимаемой жидкости.
- •29. Стационарное движение идеальной жидкости. Уравнение Бернулли.
- •30. Гидродинамика вязкой жидкости. Коэффициент вязкости. Формула Пуазейля.
- •31. Гидродинамическая неустойчивость. Турбулентность.
- •32. Упругие натяжения. Закон Гука. Модуль Юнга. Деформации растяжения и сжатия.
- •33. Статистический и термодинамический методы исследования.
- •34. Экспериментальные газовые законы. Уравнение Менделеева-Клапейрона.
- •35. Основное уравнение молекулярно-кинетической теории идеального газа.
- •36. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование термодинамической температуры.
- •37. Число степеней свободы молекулы.
- •38. Закон Максвелла для распределения молекул идеального газа по скоростям.
- •39. Барометрическая формула. Закон Больцмана для распределения.
- •40. Среднее число столкновений и средняя длина свободного пробега молекул.
- •41. Законы диффузии, теплопроводности и внутреннего трения.
- •42. Внутренняя энергия идеального газа. Работа газа при изменении его объема. Количество теплоты.
- •43. Первое начало термодинамики.
- •44. Теплоемкость. Зависимость теплоемкости идеального газа от вида процесса.
- •45. Круговой процесс (цикл). Обратимые и необратимые процессы. Тепловые двигатели и холодильные машины.
- •46. Цикл Карно и его кпд для идеального газа.
- •47. Второе начало термодинамики. Независимость кпд цикла Карно от природы рабочего тела.
- •48. Энтропия идеального газа. Статистическое толкование второго начала термодинамики.
- •49. Отступления от законов идеальных газов. Реальные газы.
- •50. Уравнение Ван-дер-Ваальса. Сравнение изотерм Ван-дер-Ваальса с экспериментальными изотермами.
- •51. Критическое состояние. Внутренняя энергия реального газа.
- •52. Фазовые переходы I и II рода. Особенности жидкого и твердого состояний вещества.
10.Поле как форма материи. Понятие о градиенте скалярной функции координат.
Поле в физике —физический объект, классически описываемый математическим скалярным, векторным, тензорным полем, подчиняющимся динамическим уравнениям (уравнениям движения, называемым в этом случае уравнениями поля или полевыми уравнениями — обычно это дифференциальные уравнения в частных производных). Другими словами, физическое поле представляется некоторой динамической физической величиной, определенной во всех точках пространства.
Физическое поле - системы обладающие бесконечно больш. числом степеней свободы - число независимых координат которые надо задать для опредиления системы в пространстве.
Градиент скалярной функции – это вектор, указывающий направление наиболее быстрого возрастания скалярной функции и по абсолютному значению равный наибольшей скорости возрастания этой функции.
Градиент
направлен по нормали к поверхности
равного уровня скалярной функции в
данной точке.
11. Потенциальная энергия материальной точки во внешнем силовом поле и ее связь с силой, действующей на материальную точку. Потенциальная энергия системы.
Потенциальная энергия — механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Пусть взаимодействие тел осуществляется посредством силовых полей, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них, — консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является сила трения. Работа dА выражается как скалярное произведение силы F на перемещение dr Fdr=-dП. Для него наряду с обозначением grad П применяется также обозначение ÑП. Ñ («набла») означает символический вектор, называемый набла-оператором. Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна П = mgh. Fх упр= -kx, По третьему закону Ньютона, деформирующая сила равна по модулю силе упругости и противоположно ей направлена. П=kx2/2. Потенциальная энергия системы, подобно кинетической энергии, является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.
12. Закон сохранения механической энергии. Диссипация энергии. Применение законов сохранения к столкновению упругих и неупругих тел. Энергия деформации.
Закон
сохранения энергии — результат обобщения
многих экспериментальных данных.
Рассмотрим систему материальных точек
массами m1,
m2,...,
mn,
движущихся со скоростями v1,
v2,...,
vn.
Пусть
,
,...,
— равнодействующие внутренних
консервативных сил, действующих на
каждую из этих точек, a
F1,
F2,
..., Fn
— равнодействующие внешних сил,
которые также будем считать консервативными.
Правая часть равенства задает работу внешних неконсервативных сил, действующих на систему. Таким образом, имеем
т.
е. изменение полной механической энергии
системы при переходе из одного состояния
в другое равно работе, совершенной при
этом внешними неконсервативными силами,
т. е. полная механическая энергия системы
сохраняется постоянной. Выражение
представляет собой закон
сохранение механической энергии:
в системе тел, между которыми действуют
только консервативные силы, полная
механическая энергия сохраняется,
т. е. не изменяется со временем.
Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.
Существует еще один вид систем — диссипативные системы, в которых механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс получил название диссипации энергии. Строго говоря, все системы в природе являются диссипативными.
В консервативных системах полная механическая энергия остается постоянной. Могут происходить лишь превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах так, что полная энергия остается неизменной. Этот закон не есть просто закон количественного сохранения энергии, а закон сохранения и превращения энергии, выражающий и качественную сторону взаимного превращения различных форм движения друг в друга. Закон сохранения и превращения энергии — фундаментальный закон природы, он справедлив как для систем макроскопических тел, так и для систем микротел.
Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. Примером применения законов сохранения импульса и энергии при решении реальной физической задачи является удар абсолютно упругих и неупругих тел.
Удар—это столкновение двух или более тел, при котором взаимодействие длится очень короткое время.
Тела во время удара претерпевают деформацию. Сущность удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара имеет место перераспределение энергии между соударяющимися телами. Наблюдения показывают, что относительная скорость тел после удара не достигает своего прежнего значения. Отношение нормальных составляющих относительной скорости тел после и до удара называется коэффициентом восстановления . Если для сталкивающихся тел =0, то такие тела называются абсолютно неупругими, если =1 — абсолютно упругими. На практике для всех тел 0 < < 1. Однако в некоторых случаях тела можно с большой степенью точности рассматривать либо как абсолютно упругие, либо как абсолютно неупругие.
Удар называется центральным, если тела до удара движутся вдоль прямой, проходящей через их центры масс. Абсолютно упругий удар — столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию.
Абсолютно неупругий удар — столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. Абсолютно неупругий удар — пример того, как происходит «потеря» механической энергии под действием диссипативных сил.