
- •Основи електроніки та мікропроцесорної техніки
- •Основні дати відкриттів і винаходів в електроніці
- •Як вивчати електроніку
- •Розділ 1. Фізичні основи електронної теорії
- •1.1 Основи електронної теорії
- •1.1.1 Електрон та його властивості
- •1.1.2 Робота виходу електронів. Електронна емісія
- •Таким чином, для відриву від поверхні провідника електрони повинні затратити роботу проелектричних сил, які повертають їх назад:
- •1.1.3 Рух електронів в електричних та магнітних полях
- •1.1.4 Електричний струм в газі
- •Контрольні питання і вправи
- •1.2. Електрофізичні властивості напівпровідників
- •1.2.1 Фізичні властивості напівпровідників
- •1.2.2 Власна провідність напівпровідників
- •1.2.3 Домішкова провідність
- •Дрейфовий і дифузний струми в напівпровіднику
- •1.2.4 Електронно-дірковий перехід
- •1.2.5 Властивості р-n переходу
- •Контрольні питання і вправи
- •2. Електронні прилади
- •2.1. Пасивні елементи електроніки
- •2.1.1. Резистори
- •2.1.2 Конденсатори
- •2.1.3 Котушки індуктивності. Трансформатори
- •2.1.4 Коливальні контури
- •2.1.5 Напівпровідникові резистори
- •Терморезистори
- •Фоторезистори
- •Варистори
- •Контрольні питання і вправи
- •2.2 Напівпровідникові діоди
- •2.2.1 Випрямні діоди
- •2.2.2. Високочастотні та імпульсні діоди
- •2.2.3 Стабілітрони
- •2.2.4 Варикапи
- •2.2.5. Тунельні діоди
- •2.2.6 Фотодіоди
- •2.2.7 Світлодіоди
- •2.2.8 Маркування діодів
- •Контрольні питаня і вправи
- •2.3 Транзистори. Тиристори
- •2.3.1 Класифікація транзисторів
- •2.3.2 Будова та принцип роботи біполярних транзисторів
- •2.3.3 Схеми ввімкнення транзистора
- •Еквівалентна схема заміщення, h – параметри транзистора
- •Статичні характеристики транзистора та визначення за ними h - параметрів
- •Температурні і частотні властивості транзистора
- •Транзистор у режимі ключа
- •Польові транзистори
- •Одноперехідні (двобазові) транзистори
- •Фототранзистори
- •Тиристори
- •Контрольні питаня і вправи
- •2.4 Електровакуумні та іонні прилади
- •Електронні лампи
- •Електровакуумний діод
- •Маркування електровакуумних приладів
- •Іонні прилади тліючого розряду
- •Неонова лампа
- •Тиратрон
- •2.5 Гібридні інтегральні мікросхеми
- •2.5.1 Конструктивні елементи гібридних інтегральних мікросхем
- •2.5.2 Пасивні елементи
- •2.5.3 Активні елементи – безкорпусні напівпровідникові прилади
- •Контрольні питання і вправи
- •2.6 Напівпровідникові інтегральні мікросхеми
- •2.6.1 Принцип виготовлення напівпровідникових імс
- •2.6.2 Великі імс
- •Контрольні питання і вправи
- •2.7 Оптоелектронні прилади
- •2.7.1 Елементна база мікроелектроніки – світловипромінювачі, фотоприймачі
- •2.7.2 Оптрони
- •Контрольні питання та вправи
- •Прилади відображення інформації
- •2.8.1 Електронно-променеві трубки
- •2.8.2 Буквенно-цифрові індикатори
- •Контрольні питання і вправи
- •3 Основи аналогової електронної схемотехніки
- •3.1 Підсилювачі
- •3.1.1 Призначення і характеристика підсилювачів
- •3.1.2 Основні показники роботи підсилювача
- •3.1.3 Підсилювачі низької частоти. Попередні каскади підсилення
- •3.1.4 Міжкаскадні зв’язки
- •3.1.5 Підсилювачі потужності
- •3.1.6 Зворотні зв’язки у підсилювачах
- •3.1.7 Фазоінвертори
- •3.1.8 Підсилювачі постійного струму Підсилювачі постійного струму прямого підсилення
- •Балансні та диференційні підсилювачі
- •3.1.9 Операційні підсилювачі
- •Масштабні інвертуючи підсилювачі
- •Масштабні неінвертуючи підсилювачі
- •Інтегратори
- •Компаратори
- •Контрольні питання та вправи
- •3.2 Генератори синусоїдних коливань
- •3.2.1 Класифікація генераторів
- •3.2.2 Автогенератори lc-типу
- •3.2.3 Стабілізація частоти lс - генераторів
- •3.2.4. Автогенератори типу rc
- •3.2.4. Автогенератор на тунельному діоді
- •3.2.5. Генератори на інтегральних мікросхемах
- •Контрольні питання та вправи
- •3.3 Випрямлячі. Стабілізатори
- •3.3.1 Класифікація випрямлячів
- •3.3.2 Однофазні випрямлячі
- •3.3.3. Випрямлячі з помноженням напруги
- •3.3.4. Трифазні випрямлячі
- •3.3.5. Згладжуючі фільтри
- •Стабілізатори постійної напруги
- •Стабілізатори струму
- •3.3.8 Стабілізатори постійної напруги на імс
- •3.3.9 Стабілізатори змінної напруги
- •3.3.10 Інвертори струму та напруги
- •Контрольні питання та вправи
- •Розділ 4. Основи цифрової електронної схемотехніки
- •4.1 Імпульсні пристрої
- •4.1.1 Загальні характеристики сигналів
- •Основні характеристики електричних сигналів імпульсного типу
- •4.1.2. Ключі як генератори імпульсів
- •4.1.3. Мультивібратори
- •4.1.4. Блокінг-генератор
- •4.1.5. Тригер на дискретних елементах
- •Контрольні питаня і вправи
- •4.2. Логічні елементи
- •4.2.1. Основні логічні операції (функції)
- •4.2.2. Найпростіші логічні схеми
- •4.2.3. Логічні інтегральні мікросхеми (класифікація)
- •4.2.4. Характеристики і параметри логічних мікросхем
- •4.2.5. Логічні імс типу дтл, ттл, на мдн (мон) транзисторах
- •4.2.6. Коротка характеристика деяких серій логічних імс
- •Контрольні питання та вправи
- •4.3. Цифрові пристрої
- •4.3.1. Цифрові способи зображення (передавання) інформації. Системи числення
- •4.3.2 Тригери на логічних елементах
- •4 Б .3.3. Двійковий лічильник та дільник частоти
- •4.3.4. Регістри
- •4.3.5. Комбінаційні цифрові інтегральні пристрої (комбінаційні цифрові мікросхеми)
Стабілізатори постійної напруги
Стабілізатори напруги — це електронні пристрої, призначені для підтримання сталого значення напруги з необхідною точністю в заданому діапазоні зміни напруги джерела або опору навантаження (дестабілізуючі чинники). За принципом роботи стабілізатори напруги поділяються на параметричні та компенсаційні. Параметричний метод стабілізації базується на зміні параметрів нелінійного елемента стабілізатора, залежно від зміни дестабілізуючого чинника, а стабілізатор називають параметричним.
В компенсаційному методі стабілізації у вимірювальному елементі порівнюється величина, що стабілізується, з еталонною і виробляється сигнал розузгодження. Цей сигнал перетворюється, підсилюється і подається на регулювальний елемент.
Параметричні стабілізатори напруги. Параметричний стабілізатор напруги на базі стабілітрона показано на рис. 3.3.13.
Особливості роботи такого стабілізатора напруги базуються на тому, що напруга стабілітрона на зворотній ділянці його вольт-амперної характеристики Uст.доп змінюється незначно в широкому діапазоні зміни зворотного струму стабілітрона. Тобто коливання напруги на вході стабілізатора зумовлюють значну зміну струму стабілітрона при незначних змінах напруги на ньому.
С
табілізатори
характеризуються коефіцієнтом
стабілізації
, (3.3.23)
який для параметричних стабілізаторів становить Кст.U= 20÷30.
Рівняння електричної рівноваги для такого стабілізатора має вигляд: U = UH + RБІ, де RБ — баластний опір, необхідний для зменшення впливу дестабілізуючих чинників на напругу навантаження.
Опір баластного резистора RБ вибирають таким, щоб при номінальному значенні напруги джерела U напруга і струм стабілітрона теж дорівнювали номінальним значенням Uст н, Iст.н. Величину Iст.н визначають за паспортними даними та виразом
(3.3.24)
Тоді, з рівняння електричної рівноваги, визначаємо баластний опір за виразом
(3.3.25)
де Ін=Рн/Uн; U≈Uсп; І=Іст.н+Ін.
Роботу параметричного стабілізатора зручно ілюструвати за допомогою вольт-амперної характеристики (ВАХ) стабілітрона та відповідної графічної побудови навантажувальної прямої (рис.3.3.14). Для побудови ВАХ стабілітрона за його паспортними даними через точку з координатами Uст.н, Іст.н проводять пряму лінію під кутом α до осі координат, що визначається значенням динамічного опору стабілітрона RД. Далі будуємо навантажувальну характеристику при номінальній напрузі джерела. Для цього визначаємо координати двох точок, через які проходитиме пряма. А саме, точка з координатою Uст.н, Іст.н точка на осі ординат, яка визначається за виразом І = U/RБ . Через ці точки проводимо навантажувальну пряму.
Роботу стабілізатора перевіряють за умови його здатності забезпечувати задане значення UH при коливаннях вхідної напруги U. Для прикладу, якщо вхідна напруга змінюється в межах ±10%, то на виході стабілізатора коливання напруги UH становить ±0,1% (рис. 3.3.14).
П
обудова
навантажувальних прямих при зміні
напруги мережі в межах ±10%
здійснюється шляхом паралельного зсуву
навантажувальної характеристики
при номінальній напрузі мережі відповідно
вліво і вправо
на 0,1U.
За
допомогою цієї побудови можна з'ясувати,
чи при таких
коливаннях напруги мережі забезпечуються
умови стабілізації, тобто,
чи точки перетину зсунених навантажувальних
характеристик з
ВАХ стабілітрона не виходять за межі
значень струмів стабілітрона Іст.мін
і Іст.макс.
Рис. 3.3.15. Вольт-амперна характеристика стабілізатора
Компенсаційні стабілізатори напруги. Робота компенсаційних (транзисторних) стабілізаторів напруги базується на порівнянні вихідної напруги стабілізатора з еталонною. Якщо вони не рівні між собою, то різниця цих напруг підсилюється й подається на регулювальний елемент, який відновлює вихідну напругу до стабілізованої величини. Такі стабілізатори дозволяють розширити діапазон стабілізованих напруг та забезпечити вищу якість стабілізації (Кст.u > 50) порівняно з параметричними стабілізаторами.
За способом вмикання регулювального елемента відносно навантаження, компенсаційні стабілізатори поділяють на послідовного та паралельного типів.
На рис. 3.3.15 зображено компенсаційний стабілізатор послідовного типу.
Рис. 3.3.15. Схема компенсаційного
стабілізатора напруги
Транзистор VT1 виконує функцію регулювального елемента, а транзистор VT2 — функцію підсилювального елемента. Еталонна напруга задається з допомогою стабілітрона VD. Вона порівнюється з напругою на резисторі R1, яка пропорційна вихідній напрузі стабілізатора, тому що цей резистор є плечем дільника напруги R1, R2. Різниця цих напруг підсилюється транзистором VT2 і виділяється на резисторі Rу. Напруга на цьому резисторі є вхідною напругою регулювального елемента VT1 і, тому, зумовлює зміну напруги емітер-колектор VT1, завдяки чому забезпечується стабілізація вихідної напруги.