
- •Основи електроніки та мікропроцесорної техніки
- •Основні дати відкриттів і винаходів в електроніці
- •Як вивчати електроніку
- •Розділ 1. Фізичні основи електронної теорії
- •1.1 Основи електронної теорії
- •1.1.1 Електрон та його властивості
- •1.1.2 Робота виходу електронів. Електронна емісія
- •Таким чином, для відриву від поверхні провідника електрони повинні затратити роботу проелектричних сил, які повертають їх назад:
- •1.1.3 Рух електронів в електричних та магнітних полях
- •1.1.4 Електричний струм в газі
- •Контрольні питання і вправи
- •1.2. Електрофізичні властивості напівпровідників
- •1.2.1 Фізичні властивості напівпровідників
- •1.2.2 Власна провідність напівпровідників
- •1.2.3 Домішкова провідність
- •Дрейфовий і дифузний струми в напівпровіднику
- •1.2.4 Електронно-дірковий перехід
- •1.2.5 Властивості р-n переходу
- •Контрольні питання і вправи
- •2. Електронні прилади
- •2.1. Пасивні елементи електроніки
- •2.1.1. Резистори
- •2.1.2 Конденсатори
- •2.1.3 Котушки індуктивності. Трансформатори
- •2.1.4 Коливальні контури
- •2.1.5 Напівпровідникові резистори
- •Терморезистори
- •Фоторезистори
- •Варистори
- •Контрольні питання і вправи
- •2.2 Напівпровідникові діоди
- •2.2.1 Випрямні діоди
- •2.2.2. Високочастотні та імпульсні діоди
- •2.2.3 Стабілітрони
- •2.2.4 Варикапи
- •2.2.5. Тунельні діоди
- •2.2.6 Фотодіоди
- •2.2.7 Світлодіоди
- •2.2.8 Маркування діодів
- •Контрольні питаня і вправи
- •2.3 Транзистори. Тиристори
- •2.3.1 Класифікація транзисторів
- •2.3.2 Будова та принцип роботи біполярних транзисторів
- •2.3.3 Схеми ввімкнення транзистора
- •Еквівалентна схема заміщення, h – параметри транзистора
- •Статичні характеристики транзистора та визначення за ними h - параметрів
- •Температурні і частотні властивості транзистора
- •Транзистор у режимі ключа
- •Польові транзистори
- •Одноперехідні (двобазові) транзистори
- •Фототранзистори
- •Тиристори
- •Контрольні питаня і вправи
- •2.4 Електровакуумні та іонні прилади
- •Електронні лампи
- •Електровакуумний діод
- •Маркування електровакуумних приладів
- •Іонні прилади тліючого розряду
- •Неонова лампа
- •Тиратрон
- •2.5 Гібридні інтегральні мікросхеми
- •2.5.1 Конструктивні елементи гібридних інтегральних мікросхем
- •2.5.2 Пасивні елементи
- •2.5.3 Активні елементи – безкорпусні напівпровідникові прилади
- •Контрольні питання і вправи
- •2.6 Напівпровідникові інтегральні мікросхеми
- •2.6.1 Принцип виготовлення напівпровідникових імс
- •2.6.2 Великі імс
- •Контрольні питання і вправи
- •2.7 Оптоелектронні прилади
- •2.7.1 Елементна база мікроелектроніки – світловипромінювачі, фотоприймачі
- •2.7.2 Оптрони
- •Контрольні питання та вправи
- •Прилади відображення інформації
- •2.8.1 Електронно-променеві трубки
- •2.8.2 Буквенно-цифрові індикатори
- •Контрольні питання і вправи
- •3 Основи аналогової електронної схемотехніки
- •3.1 Підсилювачі
- •3.1.1 Призначення і характеристика підсилювачів
- •3.1.2 Основні показники роботи підсилювача
- •3.1.3 Підсилювачі низької частоти. Попередні каскади підсилення
- •3.1.4 Міжкаскадні зв’язки
- •3.1.5 Підсилювачі потужності
- •3.1.6 Зворотні зв’язки у підсилювачах
- •3.1.7 Фазоінвертори
- •3.1.8 Підсилювачі постійного струму Підсилювачі постійного струму прямого підсилення
- •Балансні та диференційні підсилювачі
- •3.1.9 Операційні підсилювачі
- •Масштабні інвертуючи підсилювачі
- •Масштабні неінвертуючи підсилювачі
- •Інтегратори
- •Компаратори
- •Контрольні питання та вправи
- •3.2 Генератори синусоїдних коливань
- •3.2.1 Класифікація генераторів
- •3.2.2 Автогенератори lc-типу
- •3.2.3 Стабілізація частоти lс - генераторів
- •3.2.4. Автогенератори типу rc
- •3.2.4. Автогенератор на тунельному діоді
- •3.2.5. Генератори на інтегральних мікросхемах
- •Контрольні питання та вправи
- •3.3 Випрямлячі. Стабілізатори
- •3.3.1 Класифікація випрямлячів
- •3.3.2 Однофазні випрямлячі
- •3.3.3. Випрямлячі з помноженням напруги
- •3.3.4. Трифазні випрямлячі
- •3.3.5. Згладжуючі фільтри
- •Стабілізатори постійної напруги
- •Стабілізатори струму
- •3.3.8 Стабілізатори постійної напруги на імс
- •3.3.9 Стабілізатори змінної напруги
- •3.3.10 Інвертори струму та напруги
- •Контрольні питання та вправи
- •Розділ 4. Основи цифрової електронної схемотехніки
- •4.1 Імпульсні пристрої
- •4.1.1 Загальні характеристики сигналів
- •Основні характеристики електричних сигналів імпульсного типу
- •4.1.2. Ключі як генератори імпульсів
- •4.1.3. Мультивібратори
- •4.1.4. Блокінг-генератор
- •4.1.5. Тригер на дискретних елементах
- •Контрольні питаня і вправи
- •4.2. Логічні елементи
- •4.2.1. Основні логічні операції (функції)
- •4.2.2. Найпростіші логічні схеми
- •4.2.3. Логічні інтегральні мікросхеми (класифікація)
- •4.2.4. Характеристики і параметри логічних мікросхем
- •4.2.5. Логічні імс типу дтл, ттл, на мдн (мон) транзисторах
- •4.2.6. Коротка характеристика деяких серій логічних імс
- •Контрольні питання та вправи
- •4.3. Цифрові пристрої
- •4.3.1. Цифрові способи зображення (передавання) інформації. Системи числення
- •4.3.2 Тригери на логічних елементах
- •4 Б .3.3. Двійковий лічильник та дільник частоти
- •4.3.4. Регістри
- •4.3.5. Комбінаційні цифрові інтегральні пристрої (комбінаційні цифрові мікросхеми)
3.2 Генератори синусоїдних коливань
3.2.1 Класифікація генераторів
Електронний генератор – це пристрій, який перетворює електричну енергію джерела постійного струму в енергію незатухаючих електричних коливань необхідної форми, частоти і потужності.
За принципом роботи розрізняють генератори із самозбудженням (автогенератори) і генератори з зовнішнім збудженням, які по суті є підсилювачами потужності високої частоти. Електронні автогенератори розділяють на автогенератори синусоїдальних (гармонічних) коливань і автогенератори коливань несинусоїдальної форми, які прийнято називати релаксаційними (імпульсними ) автогенераторами.
Будучи першоджерелом електричних коливань, генератори з самозбудженням широко використовуються в радіопередаючих і радіоприймальних (супергетеродинних) пристроях, у вимірювальній апаратурі, в електронних обчислювальних машинах, в пристроях телеметрії і т.д. нижче показано ділення генераторів за діапазоном частот.
-
Тип генератора
Діапазон частот
Низькочастотні
Від 0,01 Гц до 100 кГц
Високочастотні
Від 100 кГц до 100 МГц
Зверхвисокочастотні
Від 100 МГц і вище
Найбільш розповсюджені схеми автогенераторів містять підсилювальний елемент і коливальну систему, пов’язані між собою колом позитивного зворотного зв’язку.
Для побудови автогенератора синусоїдальних коливань зазвичай використовуються два типи підсилювальних схем – резонансні підсилювачі і підсилювачі на резисторах. Автогенератори, виконані на основі схеми резонансного підсилювача, часто називають автогенераторами типу LC, а автогенератори, побудовані на основі схеми підсилювача на резисторах, - автогенераторами типу RC. Перші використовуються на високих частотах, інші – на низьких.
В якості підсилювальних елементів схем автогенераторів, які використовуються в пристроях електронної автоматики і обчислювальної техніки, найбільш широко застосовуються транзистори і тунельні діоди.
Принцип роботи генераторів коливань базується на реалізації умови самозбудження підсилювача з додатнім зворотнім зв’язком, структурну схему якого показано на рис.3.2.1.
Для комплексних
значень вхідних і вихідних напруг
підсилювача запишемо: Uвих
= К Uвх,
а Uвх = β
Uвих = Uзв.з,
де К, β– комплексні значення
коефіцієнта підсилення та передаточного
коефіцієнта відповідно підсилювача
та ланки зворотного зв’язку. Як відомо,
коефіцієнт підсилення за напругою
підсилювача з додатним
Uвх Uвих
Uзв.з
Рис. 3.2.1. Структурна схема генератора коливань
з
воротним
зв’язком визначається виразом
(3.2.1)
П
ерехід
підсилювача в режим генерування коливань
(КП = ∞) забезпечується умовою К
β =1 або (3.2.2)
Uвих
t
Кβ > 1 Кβ = 1
Рис. 3.2.2. Умови роботи генератора коливань
Це рівняння називають умовою самозбудження генератора коливань. Ця умова поділяється на умову балансу амплітуд (Кβ=1) і на умову балансу фаз (φ = -ψ + 2π), які визначають стабільну роботу генератора коливань (рис.3.2.2).