Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
естествознание кратко.docx
Скачиваний:
5
Добавлен:
01.04.2025
Размер:
122.26 Кб
Скачать

15. Антропный космологический принцип: его естественнонаучный и философско-методологический смысл

Даже схематичная и общая характеристика идеи возникновения всего (Вселенной) из ничего, или вакуума, вызывает у мыслящего человека немало удивления. Но этим дело не ограничивается: по мере того как ученые проникали в детали этого процесса, перед ними открывались все более удивительные вещи. Первая из них связана с так называемыми фундаментальными постоянными, которые нередко называют еще мировыми константами.

Принято отличать простые постоянные величины от фундаментальных универсальных постоянных. Например, Земля имеет постоянную массу, но существуют другие планеты, масса которых существенно отлична от земной. Значит, масса планеты не является универсальной постоянной. Тогда как масса электрона или масса протона всюду во Вселенной одинакова, это - универсальные постоянные. Специфические свойства отдельных систем зависят от тех или иных законов движения и различных начальных условий.

Однако такие параметры любых систем, как размер, масса, время жизни и другие, с точностью до порядка величины часто определяются исключительно значениями таких фундаментальных постоянных, как гравитационная постоянная, постоянная Планка, скорость света, масса электрона, масса протона и др.

Общее число фундаментальных универсальных постоянных невелико. Но оказывается, что для довольно полного описания природы требуется совсем немного таких параметров. Некоторые универсальные постоянные только что названы, но для определенности дальнейшего изложения приведем в сокращенном виде суммарный список универсальных констант и некоторых производных величин.

Приведем примеры зависимости организации и свойств материи Вселенной от мировых констант. Вещество, из которого первоначально образовались звезды и галактики, состояло из водорода (3/4) и гелия (1/4).

Откуда взялись все более тяжелые химические элементы, без которых не могла возникнуть жизнь? Теперь известно, что они синтезируются в недрах звезд. Но как они попадают наружу? Когда массивная звезда исчерпает запасы ядерного топлива (водорода), ее ядро становится неустойчивым для гравитационного сжатия и она взрывается. При этом выделяется огромное количество гравитационной энергии, большая часть которой уносится мельчайшими частицами нейтрино. Такая грандиозная вспышка называется сверхновой звездой, или просто сверхновой. Взрыв сверхновой разбрасывает по галактике обогащенное тяжелыми металлами вещество проэволюционировавшей звезды. А когда образуется новое поколение звезд и планеты, то строительным материалом для них служит разбросанный пепел умерших звезд. В этом смысле наша планета и мы сами произошли из звездного пепла.

В результате взрыва сверхновой образуется и вырывается наружу огромное множество нейтрино. Полагают, что давление, вызываемое потоком нейтрино, способно сорвать с ядра звезды ее оболочку и разметать в пространстве.

Из списка универсальных констант видно; что гравитационная постоянная очень мала, поэтому гравитационные взаимодействия очень слабы. Так, гравитационное взаимодействие между двумя атомами примерно на 40 порядков слабее электромагнитных взаимодействий. Но будь гравитация значительно сильнее, структура Вселенной коренным образом изменилась бы.

Аналогично и другие универсальные постоянные чуть ли не однозначно определяют строение и свойства физических объектов Вселенной. А поскольку эти постоянные величины возникли на ранних этапах Вселенной, когда этих объектов еще не существовало, то мы имеем все основания, говорить, что универсальные постоянные ПРЕДОПРЕДЕЛЯЮТ структуру нашей Вселенной.

Однако многие исследователи пугаются этого слова, так как предзаданность, или предопределенность, считают уделом мистики. Но при этом они странным образом не замечают того, что сами, и при этом очень широко, пользуются такой методикой исследования, по крайней мере, при рассмотрении всех ретроспективных проблем.

Это относится к онтологическому и методологическому аспектам исследования. В самом деле, продвигаясь ретроспективно к началу расширения Вселенной, ученые исходят из существующих частиц, типов взаимодействия и законов. С учетом настоящего (предзаданного) они пытаются восстановить события прошлого такими, чтобы из них прийти к настоящему. То есть весь процесс поиска прошлого ориентирован на настоящее и существенно определяется знанием настоящего, знанием существующих частиц, взаимодействий, законов как предзаданного.

Но дело не ограничивается тем, что универсальные фундаментальные постоянные предопределяют строение и свойства нашей Вселенной. Кроме того, нужно принять во внимание и то, что все (Вселенная) рождается из ничего (в конечном счете, из первородного космического вакуума), и притом рождается в гигантском пламени Большого взрыва. Тогда неизбежно возникает вопрос: откуда взялись все эти мировые константы?

Этот вопрос приобретает еще большую остроту, если учесть, что мировые константы не изолированы, а очень тонко подстроены друг под друга и оказывают свое влияние на структуру и свойства Вселенной в разных сочетаниях и все вместе как согласованный ансамбль.

Прежде всего, необходимо уяснить философский (метафизический) смысл этого факта. Многие авторы допускают возможность случайности той или иной мировой константы, что в принципе неверно. Неотъемлемым свойством случайных событий является их скоротечность, изменчивость, быстрая сменяемость, что не совместимо с фундаментальными постоянными, которые неизменны и действуют на протяжении 15-20 млрд. лет. Уже одно это свидетельствует о какой-то их необходимости. Кроме того, упускается из виду то, что случайность и необходимость основаны на причинности (в мире нет беспричинных явлений). Более того, случайность и необходимость строятся из одного и того же множества причинно-следственных связей, только интегрируются векторные причинности по-разному: случайность - это узел или точка пересечения множества причинностей, а необходимость - их геометрическая сумма.

Поэтому если даже мысленно допустить (без всякого на то основания) случайность некоторой константы, то для ансамбля мировых констант это исключено, так как согласованное связанное и устойчивое множество фундаментальных величин не есть случайность.

Теперь поставленный выше вопрос приобретает более острое звучание. Если наблюдаемая физическая Вселенная предопределяется согласованным набором фундаментальных величин, то откуда взялся этот гармоничный ансамбль универсальных величин? В исходном космическом вакууме он вряд ли задан. Ученые давно обратили внимание на все это, но никакого физического принципа никто не выдвинул, чтобы физически объяснить происхождение гармонии универсальных величин.

Более того, исследователи подметили еще одну удивительную особенность, связанную с совпадением больших чисел, которая направила их на поиски объяснения причин развития Вселенной не в физике, а совсем в другой области, далекой от физики, - в антропологическом принципе космологии. Речь конкретно идет о числе 1040, которым почему-то выражаются разные фундаментальные величины и их соотношения.

Вокруг этого принципа до сих пор бушуют страсти. Хотя число 1040 получается путем округления, этим не подрывается строгость выводов, потому что для такого гигантского числа даже погрешность в 102 ничтожно мала. Кроме того, это число можно получить из разных посылок. Важно другое: число 1040 полностью составлено из фундаментальных постоянных величин, поэтому имеет фундаментальный смысл.

На совпадение больших чисел ученые обратили внимание давно. В 30-е годы известный физик-теоретик Поль Дирак попытался дать этому физическое объяснение, которое, однако, исходило из предположения, что гравитационная постоянная изменяется со временем, как и постоянная Хаббла, определяющая возраст Вселенной. Однако неизменность гравитационной постоянной подтверждается всеми данными теоретических и опытных исследований.

Обычно в физике «наблюдатель» не принимается во внимание. Ряд ученых подвергли сомнению это предположение, считая, что строение физического мира неотделимо от обитателей, наблюдающих его, и неотделимо в самом фундаментальном смысле.

Они утверждают, что действительно существует некий принцип, осуществляющий невероятно тонкую подстройку Вселенной. Только это не физический, а антропный принцип. Такую мысль развивали А. Эддингтон, П. Дирак, Дж. Барроу, Р. Дикке, Б. Картер и др.

Р. Дикке одним из первых привлек биологию для объяснения непонятной особенности Вселенной, которая весьма специфична. В 1961 году он заявил об ошибочности поисков физического объяснения особенностей Вселенной. Аргументы Р. Дикке обосновывают, что гравитационная постоянная тонкой структуры в качестве мировой константы детерминирует эволюцию Вселенной в направлении, ведущем к возникновению человека, и что возникновение человека становится возможным тогда, когда возраст Вселенной (tnow) сравняется с числовым значением .Таким образом, биологическое объяснение фундаментальной особенности Вселенной увенчалось успехом там, где теоретическая физика потерпела неудачу.

Как видим, рассуждения Р. Дикке вполне логичны. Поэтому идею антропного принципа можно считать научно обоснованной.

Казалось бы, здесь все логично, ясно и обоснованно. Но именно с этого пункта начинается разнобой особых мнений и взглядов на антропный принцип космологии. Точнее говоря, существует широкое неприятие антропного принципа как ненаучной (антинаучной) идеи, но без сколько-нибудь строгого физического и логического обоснования. Причина этого, на наш взгляд, в мировоззренческих основаниях - в атеистических предубеждениях одних и размытости мировоззренческой составляющей других.

Так, П. Девис сетует на то, что выводы Р. Дикке не согласуются с коперниковской традицией, отрицающей привилегированное положение Земли в пространстве. Однако Р. Дикке относительно пространственной выделенности tnow вообще ничего не говорит, величина tnow сама за себя говорит о выделенности ее лишь во времени, поэтому указанное сомнение П. Девиса снимается. Иногда в качестве возражения указывается на то, что антропный принцип (АП) не соответствует принципу относительности классической и релятивистской физики. Во-первых, это некорректное возражение, поскольку принцип относительности касается лишь движения систем отсчета друг относительно друга, а в данном случае речь идет об эволюции Вселенной. Во-вторых, что касается другого смыслового аспекта относительности - инвариантности систем отсчета, то в этом отношении мировые константы являются образцом постоянства своего действия.

Антропный принцип требует в центр проблемы выдвинуть одну константу - хаббловский возраст Вселенной (точнее tnow). И далее требуется установить ее связь с другими величинами, которые характеризуются столь же большими значениями (1040).

Однако такая расширенная постановка вопроса пока что не проработана. Чтобы сохранить антропный, принцип для расширенного случая, саму формулировку АП усиливают и называют это сильным антропным принципом.

В формулировке Б. Картера сильный АП выглядит так: «Вселенная (и, следовательно, фундаментальные параметры, от которых она зависит) должна быть такой, чтобы в ней на некотором этапе эволюции допускалось существование наблюдателя».

В сопоставлении с этим характеристику АП, данную Робертом Дикке, Брандон Картер обозначил как слабый антропный принцип. Р. Дикке так раскрывает смысл слабого АП: наше существование как наблюдателей, состоящих из соединений углерода, объясняет равенство двух разных отношений одному и тому же большому числу:

В отличие от этого сильный АП, расширенный по содержанию, физически еще не обоснован, поэтому вызывает скепсис многих авторов. Скепсис, который обычно не подтверждается никаким анализом и никакими серьезными аргументами. Для примера обратимся к высказыванию серьезного автора, каковым является П. Девис. Сильный антропный принцип «представляет собой радикальный отход от традиционной общей концепции научного объяснения. По существу, он утверждает, что Вселенная приспособлена для существования жизни и что как законы физики, так и начальные условия подстраиваются таким образом, чтобы гарантировать появление жизни. В этом отношении сильный антропный принцип сродни традиционному религиозному объяснению мира: Бог сотворил мир, чтобы люди населяли его».

А суть дела проста и состоит в идее предопределенности: исходные мировые константы предопределяют последующую эволюцию Вселенной. Эту идею и не приемлет Девис, но выше отмечалось, что идея предзаданности онтологически и методологически оправдана. Она идет от Аристотеля и широко используется в науке, во всех ретроспективных научных исследованиях.

Таким образом, слабый антропный принцип, на наш взгляд, можно считать хорошо обоснованным логически и физически. Сильный антропный принцип еще не получил достаточного физического обоснования, но логически связан с первым и дополняет его.

Идея антропного принципа в формулировке Р. Дикке не нуждается в защите, так как ее автор превосходно сделал это сам. Мы лишь старались подчеркнуть логичность его рассуждений и корректность его аргументации. Равносильного преодоления аргументации Р. Дикке, насколько нам известно, не существует и вряд ли это возможно.

Но, несмотря на нашу приверженность антропному принципу, нас не вполне удовлетворяют аргументы сторонников этого принципа и, тем более, его противников. Общим недостатком тех и других является то, что они ограничиваются рассмотрением лишь внешних условий, а именно мировых констант, и, исходя из них, пытаются обосновать или опровергнуть АП.

Необходимо осознать, что условия, сколь бы фундаментальными они ни были, не раскрывают эволюции Вселенной в ее необходимости. Нам представляется, что понять эту необходимость можно лишь на основе ближайших причин, которые по своей фундаментальности должны быть сравнимы с мировыми константами. Вместе с тем, поскольку они являются ближайшими, то по необходимости должны изменяться в эволюции Вселенной. Иначе говоря, мировые постоянные должны быть дополнены мировыми переменными величинами. Наукой и философией такие переменные величины установлены, хотя их список, возможно, еще не является полным.

Переменными эти величины являются в том смысле, что в эволюции материальных систем они качественно изменяются, развиваются. Так, отражение - всеобщее свойство материи, но оно способно к развитию, воплощаясь в качественно различные формы: элементарное отражение на уровне физико-химических взаимодействий, раздражимость на уровне живой протоплазмы и, далее, в виде ощущений, восприятий, воображения, мышления. К качественным изменениям способно и другое всеобщее свойство материи - саморегуляция, которая может выступать и в примитивной форме, выражаемой принципом Ле Шателье-Брауна, в виде гомеостаза и в разных видах психической саморегуляции, и в виде социальной саморегуляции. Активность также способна к развитию и также воплощается в разные формы взаимодействия и деятельности.

Идея дополнения мировых констант универсальными переменными величинами, на наш взгляд, является конструктивной и эвристичной. Даже из краткой и беглой наметки этой идеи можно вывести ряд нетривиальных следствий, проливающих свет, казалось бы, на неразрешимые вопросы. Укажем два таких следствия.

1. Поскольку жизнь и разум производны от развития одних и тех же всеобщих свойств материи, указанных выше, то они (жизнь и разум) должны быть сопоставимыми для разных планетных систем и галактик. Если на разных планетах продолжительность их развития совпадает, то и сами они по необходимости должны быть подобными. При разной продолжительности развития жизни разум на одной планете может отличаться сколь угодно существенно от разума на другой планете, но не настолько, чтобы исключить в принципе понимание друг друга. Поэтому утверждения о цивилизации в виде «черного облака» (Ф. Хойл), «океана мыслящей плазмы» (С. Лем), «разумной плесени» (А. Н. Колмогоров) мы рассматриваем как шутки выдающихся авторов.

Таким образом, обосновывается возможность экстраполяции земных условий на космические.

2. Из той же посылки можно сделать еще один вывод, возвышающий земные представления до космического уровня. В самом деле, поскольку жизнь и разум на планетах Галактики и Метагалактики производны от набора одних и тех же всеобщих свойств материи, то, раскрывая природу земного разума через эти всеобщие свойства, мы преодолеваем антропоморфизм и геоцентризм и поднимаемся до уровня космологической характеристики.

Таким образом, для конструктивного понимания эволюции материи Вселенной нужно исходить не только из фундаментальных постоянных величин в виде мировых констант, но и из не менее переменных величин в виде всеобщих свойств материи, которые образуют ближайшее основание эволюции и позволяют понять ее в ее необходимости. Этим открываются дополнительные возможности для обоснования и развития антропологического принципа космологии.

15. История исследования элементарных частиц и фундаментальных взаимодействий насчитывает более двух с половиной тысяч лет и восходит к идеям древнегреческих натурфилософов о строении Мира. Однако серьезная научная разработка данного вопроса началась только в конце XIX-го века. В 1897 году выдающийся английский физик-экспериментатор Дж.Дж.Томсон определил отношение заряда электрона к его массе. Тем самым, электрон окончательно обрел статус реального физического объекта и стал первой известной элементарной частицей в истории человечества. Cуществование элементарных частиц физики обнаружили при изучении ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время физика элементарных частиц и ядерная физика являются близкими, но самостоятельными разделами физики, объединенными общностью многих рассматриваемых проблем и применяемыми методами исследования. Главная задача физики элементарных частиц – это исследование природы, свойств и взаимных превращений элементарных частиц. Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, т.е. неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М.Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Конец XIX века ознаменовался открытием явления радиоактивности, а также открытиями электронов и α-частиц. В 1905 году в физике возникло представление о квантах электромагнитного поля – фотонах.

Элементарные частицы

В 1911году было открыто атомное ядро (Э.Резерфорд) и окончательно было доказано, что атомы имеют сложное строение. В 1919 году Резерфорд в продуктах расщепления ядер атомов ряда элементов обнаружил протоны. В 1932 году Дж.Чедвик открыл нейтрон. Стало ясно, что ядра атомов, как и сами атомы, имеют сложное строение. Возникла протон-нейтронная теория строения ядер. В том же 1932 году в космических лучах был открыт позитрон. Позитрон – положительно заряженная частица, имеющая ту же массу и тот же (по модулю) заряд, что и электрон. Существование позитрона было предсказано П.Дираком в 1928 году. В эти годы были обнаружены и исследованы взаимные превращения протонов и нейтронов и стало ясно, что эти частицы также не являются неизменными элементарными «кирпичиками» природы. В 1937 году в космических лучах были обнаружены частицы с массой в 207 электронных масс, названные мюонами (μ-мезонами). Затем в 1947–1950годах были открыты пионы (т.е. π-мезоны), которые, по современным представлениям, осуществляют взаимодействие между нуклонами в ядре. В последующие годы число вновь открываемых частиц стало быстро расти. Этому способствовали исследования космических лучей, развитие ускорительной техники и изучение ядерных реакций. В настоящее время известно около 400 субъядерных частиц, которые принято называть элементарными. Подавляющее большинство этих частиц являются нестабильными. Исключение составляют лишь фотон, электрон, протон и нейтрино. Все остальные частицы через определенные промежутки времени испытывают самопроизвольные превращения в другие частицы. Нестабильные элементарные частицы сильно отличаются друг от друга по временам жизни. Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин. Другие частицы «живут» гораздо меньшее время. Например, среднее время жизни μ-мезона равно 2,2•10–6с, нейтрального π-мезона – 0,87•10–16с. Многие массивные частицы – гипероны имеют среднее время жизни порядка 10–10с. Существует несколько десятков частиц со временем жизни, превосходящим 10–17с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными. Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10–22–10–23 с. Способность к взаимным превращениям – это наиболее важное свойство всех элементарных частиц. Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (т.е. исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс – рождение электронно-позитронной пары, например, при столкновении фотона с достаточно большой энергией с ядром. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, т.е. обе частицы исчезают, превращаясь в кванты излучения или другие частицы. Античастица обнаружена даже у нейтрона. Нейтрон и антинейтрон отличаются только знаками магнитного момента и так называемого барионного заряда. Возможно существование атомов антивещества, ядра которых состоят из антинуклонов, а оболочка – из позитронов. При аннигиляции антивещества с веществом энергия покоя превращается в энергию квантов излучения. Это огромная энергия, значительно превосходящая ту, которая выделяется при ядерных и термоядерных реакциях. В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации.

Элементарные частицы объединяются в три группы: фотоны, лептоны и адроны.

К группе фотонов относится единственная частица – фотон, которая является носителем электромагнитного взаимодействия.

Следующая группа состоит из легких частиц лептонов. В эту группу входят два сорта нейтрино (электронное и мюонное), электрон и μ-мезон. К лептонам относятся еще ряд частиц. Все лептоны имеют спин ½.

Третью большую группу составляют тяжелые частицы, называемые адронами. Эта группа делится на две подгруппы. Более легкие частицы составляют подгруппу мезонов. Наиболее легкие из них – положительно и отрицательно заряженные, а также нейтральные π-мезоны с массами порядка 250 электронных масс. Пионы являются квантами ядерного поля, подобно тому, как фотоны являются квантами электромагнитного поля. В эту подгруппу входят также четыре K-мезона и один η0-мезон. Все мезоны имеют спин, равный нулю. Вторая подгруппа – барионы – включает более тяжелые частицы. Она является наиболее обширной. Самыми легкими из барионов являются нуклоны – протоны и нейтроны. За ними следуют так называемые гипероны. Замыкает таблицу омега-минус-гиперон, открытый в 1964 г. Это тяжелая частица с массой в 3273 электронных масс. Все барионы имеют спин ½. Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц.

В 1964г. американским физиком М. Гелл-Маном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы – адроны – построены из более фундаментальных частиц, названных кварками. (Название КВАРК было заимствовано их первооткрывателем физиком М.Гелл-Манном в одном из романов Дж.Джойса. По-немецки «кварк» - «творог», но в романе это слово означает нечто двусмысленное и таинственное). На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых. Теория Гелл-Мана предполагала существование трех кварков и трех антикварков, соединяющихся между собой в различных комбинациях. Так, каждый барион состоит из трех кварков, антибарион – из трех антикварков. Мезоны состоят из пар кварк–антикварк. С принятием гипотезы кварков удалось создать стройную систему элементарных частиц. Однако предсказанные свойства этих гипотетических частиц оказались довольно неожиданными. Электрический заряд кварков должен выражаться дробными числами, равными 2/3 и 1/3 элементарного заряда. Многочисленные поиски кварков в свободном состоянии, производившиеся на ускорителях высоких энергий и в космических лучах, оказались безуспешными. Ученые считают, что одной из причин ненаблюдаемости свободных кварков являются, возможно, их очень большие массы. Это препятствует рождению кварков при тех энергиях, которые достигаются на современных ускорителях. Тем не менее, большинство специалистов сейчас уверены в том, что кварки существуют внутри тяжелых частиц – адронов.

Фундаментальные взаимодействия

Процессы, в которых участвуют различные элементарные частицы, сильно различаются по характерным временам их протекания и энергиям. Согласно современным представлениям, в природе осуществляется четыре типа взаимодействий, которые не могут быть сведены к другим, более простым видам взаимодействий: сильное, электромагнитное, слабое и гравитационное. Эти типы взаимодействий называют фундаментальными.

Сильное (или ядерное) взаимодействие – это наиболее интенсивное из всех видов взаимодействий. Они обуславливает исключительно прочную связь между протонами и нейтронами в ядрах атомов. В сильном взаимодействии могут принимать участие только тяжелые частицы – адроны (мезоны и барионы). Сильное взаимодействие проявляется на расстояниях порядка и менее 10–15м. Поэтому его называют короткодействующим.

Электромагнитное взаимодействие. В этом виде взаимодействия могут принимать участие любые электрически заряженные частицы, а так же фотоны – кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер с большими массовыми числами. Электромагнитное взаимодействие обуславливает процессы поглощения и излучения фотонов атомами и молекулами вещества и многие другие процессы физики микро- и макромира.

Слабое взаимодействие – наиболее медленное из всех взаимодействий, протекающих в микромире. В нем могут принимать участие любые элементарные частицы, кроме фотонов. Слабое взаимодействие ответственно за протекание процессов с участием нейтрино или антинейтрино, например, β-распад нейтрона а также безнейтринные процессы распада частиц с большим временем жизни (τ≥10–10с). Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц силы гравитационного взаимодействия между ними пренебрежимо малы и в процессах микромира их роль несущественна. Гравитационные силы играют решающую роль при взаимодействии космических объектов (звезды, планеты и т.п.) с их огромными массами.

В 30-е годы XX века возникла гипотеза о том, что в мире элементарных частиц взаимодействия осуществляются посредством обмена квантами какого-либо поля. Эта гипотеза первоначально была выдвинута нашими соотечественниками. Они предположили, что фундаментальные взаимодействия возникают в результате обмена частицами, подобно тому, как ковалентная химическая связь атомов возникает при обмене валентными электронами, которые объединяются на незаполненных электронных оболочках. Взаимодействие, осуществляемое путем обмена частицами, получило в физике название обменного взаимодействия. Так, например, электромагнитное взаимодействие между заряженными частицами, возникает вследствие обмена фотонами – квантами электромагнитного поля.

Теория обменного взаимодействия получила признание после того, как в 1935г. японский физик Юкава теоретически показал, что сильное взаимодействие между нуклонами в ядрах атомов может быть объяснено, если предположить, что нуклоны обмениваются гипотетическими частицами, получившими название мезонов. Юкава вычислил массу этих частиц, которая оказалась приблизительно равной 300 электронным массам. Частицы с такой массой были впоследствии действительно обнаружены. Эти частицы получили название π-мезонов (пионов). В настоящее время известны три вида пионов: π+, π– и π0.

В 1957 году было теоретически предсказано существование тяжелых частиц, так называемых векторных бозонов W+, W– и Z0, обуславливающих обменный механизм слабого взаимодействия. Эти частицы были обнаружены в 1983 году в экспериментах на ускорителе на встречных пучках протонов и антипротонов с высокой энергией. Открытие векторных бозонов явилось очень важным достижением физики элементарных частиц. Это открытие ознаменовало успех теории, объединившей электромагнитное и слабое взаимодействия в единое так называемое электрослабое взаимодействие. Эта новая теория рассматривает электромагнитное поле и поле слабого взаимодействия как разные компоненты одного поля, в котором наряду с квантом электромагнитного поля участвуют векторные бозоны. После этого открытия в современной физике значительно возросла уверенность в том, что все виды взаимодействия тесно связаны между собой и, по существу, являются различными проявлениями некоторого единого поля. Однако объединение всех взаимодействий остается пока лишь привлекательной научной гипотезой. Физики-теоретики прилагают значительные усилия в попытках рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Эта теория получила название Великого объединения.

Ученые предполагают, что и у гравитационного взаимодействия должен быть свой переносчик – гипотетическая частица, названная гравитоном. Однако эта частица до сих пор экспериментально не обнаружена. В настоящее время считается доказанным, что единое поле, объединяющее все виды взаимодействия, может существовать только при чрезвычайно больших энергиях частиц, недостижимых на современных ускорителях. Такими большими энергиями частицы могли обладать только на самых ранних этапах существования Вселенной, которая возникла в результате так называемого Большого взрыва (Big Bang). Космология – наука об эволюции Вселенной – предполагает, что Большой взрыв произошел 18 миллиардов лет тому назад. В стандартной модели эволюции Вселенной предполагается, что в первый период после взрыва температура могла достигать 1032 К, а энергия частиц E=kT достигать значений 1019 ГэВ. В этот период материя существовала в форме кварков и нейтрино, при этом все виды взаимодействий были объединены в единое силовое поле. Постепенно по мере расширения Вселенной энергия частиц уменьшалась, и из единого поля взаимодействий сначала выделилось гравитационное взаимодействие (при энергиях частиц ≤1019ГэВ), а затем сильное взаимодействие отделилось от электрослабого (при энергиях порядка 1014ГэВ). При энергиях порядка 103ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Одновременно с этими процессами шло формирование более сложных форм материи – нуклонов, легких ядер, ионов, атомов и т.д. Космология в своей модели пытается проследить эволюцию Вселенной на разных этапах ее развития от Большого взрыва до наших дней, опираясь на законы физики элементарных частиц, а также ядерной и атомной физики.

Квантовые числа элементарных частиц

Совокупность внутренних квантовых чисел элементар¬ной частицы полностью ее определяет. Термин «внутрен¬ние» оттеняет принадлежность квантовых чисел собствен¬но частице; эти квантовые числа не связаны со свойства¬ми однородности времени и однородности и изотропности пространства, которые предопределяют привычные со¬храняющиеся величины: энергию, импульс и момент ко¬личества движения. Наиболее известными (привычными) характеристиками элементарных частиц являются их масса и электрический заряд. Эти величины пришли в физику элементарных частиц из классической физики, и их появление не было связано с развитием квантовой механики. Принципиально новым было появление специфически квантовых чисел. Здесь в первую очередь следует назвать спин частиц. Первоначально спин вошел в физику как собственный момент количества движения Ме электрона со значением: Ме =ħ/2. Однако такая трактовка спина встречает решительные возражения. Дело в том, что по современным представлениям размеры элементарных час¬тиц, не имеющих внутренней структуры (а электрон отно¬сится именно к разряду таких частиц), равны нулю. Но момент Ме = [гере] (ре — импульс частицы). Поскольку ге = 0, то и момент Ме = 0 и, следовательно, не равен ħ/2. Поэтому отождествление спина с образом вращаю¬щегося в пространстве электрона хотя и весьма наглядно, все же неправомочно более последовательной представляется трактовка спи¬на в рамках квантовомеханических представлений с уче¬том того, что спиновое состояние системы (в данном слу¬чае электрона) определяется вектором в некотором прост¬ранстве. Тогда длина (норма) вектора задается так, чтобы его проекция на одну из осей равнялась ±ħ /2. Спиновое состояние электрона определяется вероятностью того, что проекция спина имеет определенный знак. Все же следует отметить разницу между обычными векторами и вектором, характеризующим спин. Для этого вектора определено лишь вращение вокруг заданного начала, в то время как обычный вектор может перемещаться также в простран¬стве.

Весьма популярно теоретико-групповое определение спина. Спин — неприводимое представление группы вра¬щения SU (2). К сожалению, к этому определению мож¬но отнести известную остроту героя Отечественной войны 1812 г. генерала А. П. Ермолова: «В этой фразе русские слова звучат, как иностранные». Знакомым с теорией групп это определение покажется тривиальным; для не¬знакомых оно непонятно. Более важно другое: спин — величина, имеющая раз¬мерность момента количества движения, и может склады¬ваться с ним по стандартным квантовомеханическим пра¬вилам.

Далее следует перейти к другим квантовым числам, никак не связанным с привычным физическим пространст¬вом.

Изотопический спин. В 1932 г. Гейзенберг обратил внимание на удивитель¬ную близость масс протона (тр) и нейтрона (mп): тp = 938,3 МэВ, а тп = 939,6 МэВ. В этой связи Гейзен¬берг выдвинул в 1932 г. идею, которая по своей значи¬мости (по крайней мере в области элементарных частиц) едва ли уступает сформулированному им принципу неоп¬ределенности. Гейзенберг предположил, что протон и нейтрон — различные состояния одной и той же части¬цы, названной им нуклоном. Наблюдаемое различие между протонным и нейтронным состояниями нуклона, с точки зрения Гейзенберга, сводится к разнице значений элек¬трического заряда (ер — е, еп — 0), которая и обусловли¬вает небольшое различие в массах тр и тп. Если бы Гейзенберг удовлетворился констатацией этого факта, то она не оставила бы никакого следа в физике. Однако Гейзенберг сформулировал квантовую интерпретацию этого яв¬ления, которая, разумеется существенно расширенная, и лежит в основе теории элементарных частиц. Эта концепция базируется на следующей идее: разли¬чие в состояниях протона и нейтрона характеризуется новым внутренним квантовым числом, названным им изо¬топическим спином. Слово «спин» в этом термине подчер¬кивает то обстоятельство, что математический метод, описывающий изотопический спин, близок к таковому, описывающему обычный спин. Существует вектор изотопического спина I, проекция которого Iz на ось z может принимать два значения ± 1/2 в соответствии с тем, как проекция обычного спина также принимает эти значения. Условились полагать, что зна¬чение Iz = 1/2 соответствует протонному состоянию нуклона, а Iz = - 1/2 — нейтронному. Однако в рамках этой концепции возникает следующий вопрос: в каком прост¬ранстве существует вектор изотопического спина? Как мы установили ранее, вектор обычного спина можно было свя¬зать с обычным физическим пространством (спин и момент количества движения имеют одинаковую размерность). В концепции изотопического спина эта связь полностью утрачивается. Пространство изотопического спина — абстрактное пространство в том смысле, что оно не связано с тем физическим пространством, в котором существуют макроскопические тела и функционируют описывающие их динамические законы.

Изотопический спин — внутрен¬нее квантовое число, для описания которого вводится специальное математическое («воображаемое») простран¬ство. Кардинальность идеи изотопического спина и со¬стояла в том, что впервые в физику элементарных частиц с необходимостью (а не только для удобства вычислений) вводилось нефизическое пространство, в котором опреде¬лялся вектор изотопического спина. Формализм (метод) изотопического спина впоследствии превосходно оправдался при интерпретации многочисленных экспериментов и послужил образцом для описания совокупности других квантовых чисел.

- Концепция изотопического спина приводит к тому, что в сильных взаимодействиях появляются две сохраняю¬щиеся величины: норма вектора изотопического спина и полная проекция Iz системы элементарных частиц (ана¬логично обычному спину).

- Пространство, в котором функционирует изотопи¬ческий спин, является двумерным комплексным евклидо¬вым пространством. Такое пространство можно предста¬вить себе как пространство двух измерений, в котором каждая точка х — комплексное число. Евклидовость оз¬начает, что модуль вектора (х1 х2) в этом пространстве задается суммой х12 + х22. Странность В начале 50-х годов было обнаружено следующее яв¬ление. Вновь открытые элементарные частицы (K-мезон и Λ-частица) не рождались порознь. Например, реакция π- + p→Λ0 + π0 (π-пион), которая, казалось бы, не была запрещена никакими физическими законами, не осуществлялась на опыте. Однако, например, превосход¬но наблюдалась следующая реакция: π- + p→Λ0 +K0. В физике элементарных частиц существует «золо¬тое» правило: все, что не запрещено, должно осуществлять¬ся в природе. В макроскопической физике такого категорического правила нет. Категорическое отрицание в мик¬рофизике означает, что существует некое правило запре¬та. По этой причине отсутствие реакций с появлением од¬ной Λ-частицы и обязательное парное рождение должны были найти свое отражение в конкретном правиле. Геллман и Нишиджима сформулировали это правило в 1952 г. В этом правиле К- и Λ-частицам приписывалось новое квантовое число — странность (S), которое строго со¬храняется в сильных взаимодействиях. Для простоты бы¬ло предложено характеризовать странность целыми чис¬лами. Для Λ-частицы S= -1, для K-мезонов S = +1, странность нуклонов и пионов равна нулю. Тогда легко объясняется «странное» поведение новых элементарных частиц. В реакции с одиночным рождением Λ-частиц стран¬ность не сохраняется; такая реакция запрещена. При парном рождении странности Λ- и K-частиц компенси¬руются, и, следовательно, такие реакции разрешены. Отметим, что впоследствии были обнаружены элемен¬тарные частицы с большими (по абсолютной величине) значениями странности. Общее ограничение на величину странности | S | ≤ 3. На следующем этапе возникла необходимость в еди¬ном описании трех сохраняющихся величин: I, IZ, S. Однозначный метод восстановления симметрии динамиче¬ских уравнений по сохраняющимся величинам отсутству¬ет. Однако самое простое обобщение схемы изотопического спина оказалось весьма плодотворным. Вместо двумер¬ного пространства изотопического спина было предложе¬но для описания всех трех сохраняющихся величин использовать трехмерное комплексное евклидово простран¬ство. Вектор, соответствующий всем квантовым числам, функционировал именно в таком пространстве.

Цвет. Среди квантовых чисел особое место занимает электри¬ческий заряд элементарных частиц. С одной стороны, это типично квантовое число. Все заряженные элементарные частицы имеют заряд, кратный величине е. Введение в фи¬зику кварков с их дробным зарядом, по существу, не из¬меняет этой ситуации. Надо лишь считать за единицу за¬ряда («квант») электрический заряд кварков.

С другой стороны, электрический заряд несет и дру¬гую функциональную нагрузку. Заряд электрона — ха¬рактеристика электромагнитного взаимодействия, опре¬деляющая константу αе, а следовательно, и само взаимо¬действие. В этой двойственной роли электрического заряда зало¬жено, например, его отличие от массы, которая не имеет квантовой природы в том смысле, что отсутствует «квант» массы. Сильное взаимодействие — типично микроскопическое взаимодействие. Поэтому естественно допустить по ана¬логии с электромагнитным взаимодействием, что сущест¬вует квантовое число — «сильный» заряд. Однако сильные взаимодействия нуклонов не являются дальнодействующими — сильные заряды не проявляются на больших расстояниях. Поэтому следствием гипотезы «сильного» за¬ряда является (опять-таки по аналогии со свойством ненаблюдаемости кварков) допущение, что внутри нуклона «сильные» заряды трех кварков компенсируют друг дру¬га, так что результирующий сильный заряд нуклонов ра¬вен нулю.

Казалось бы, простейший вариант такой гипотезы (по аналогии с электромагнетизмом) — приписать «сильному» заряду три значения: ±1 и 0. Однако такое простейшее допущение противоречит установившемуся представле¬нию о симметрии частиц с различными знаками электри¬ческих зарядов. В соответствии с современной теорией системы, в которых электроны (заряд - е) заменены на позитроны (заряд +е), эквивалентны (так называемая заря¬довая инвариантность). Очевидно, что такая эквивалент¬ность исчезает, если заряженные частицы заменить на нейтральные. Поэтому для характеристики «сильного» заряда нужно придумать величину, которая в трех моди¬фикациях была бы полностью эквивалентна, и, кроме то¬го, сумма трех различных зарядов обращалась бы в нуль, так как «сильный» заряд (в отличие от электромагнит¬ного) никогда не наблюдался. Оба названных условия исключали использование простых математических образов — аналогов электро¬магнетизма, где для описания огромной совокупности данных использовали двузначность шкалы реальных чи¬сел. По этой причине аналогом и термином, определяю¬щим «сильный» заряд, послужил физический образ — цвет. Общеизвестно, что именно три цвета (например, красный, желтый и синий) имеют свойство дополнитель¬ности, т. е. их совокупность образует белый цвет. Белый цвет — образ обесцвеченности — соответствует отсутст¬вию «сильного» заряда у наблюдаемых элементарных час¬тиц. Кварки в нуклонах обладают сильным зарядом — «цветом», различие в цветах кварков, входящих в состав одной и той же частицы, таково, что в результате она обес¬цвечивается, т. е. сильный заряд (цвет) этих частиц обра¬щается в нуль. Поле нуклона — результирующее поле кварков — быстро убывает с расстоянием и аналогично полю электрического мультиполя, формирующего взаимодействие Ван-дер-Ваальса (поле диполя убывает обратно пропорционально кубу расстояния).

Подчеркнем, что термин «цвет», употребляемый как характеристика силь¬ного взаимодействия, не имеет никакого отношения (кро¬ме терминологического) к оптическим цветам. Симметрия кварков относительно трех цветов (в отли¬чие от симметрии электрических зарядов относительно знаков + и - ) приводит еще к одному важному ново¬введению. Частицы, переносящие взаимодействие между кварками,— глюоны обладают цветом и, следовательно, переносят его, изме¬няя цвет (но не сорт) кварка. Например, «красный» кварк во время подобного взаимодействия превращается в «жел¬тый». В этом проявляется коренное отличие квантовой хромодинамики от квантовой электродинамики, в кото¬рой частицы - переносчики взаимодействия (фотоны) - электронейтральны и, следовательно, не изменяют харак¬теристику электрического заряда — его знак. Наличие цвета у глюонов приводит к взаимодействию между ними и, следовательно, к кардинальному различию уравнений квантовой электродинамики и квантовой хро¬модинамики. Электромагнитные уравнения, как правило, линейные; уравнения квантовой хромодинамики прин¬ципиально нелинейные. Последнее обстоятельство су¬щественно усложняет их решение. В частности, проблема невылетания кварков (о которой говорилось выше) свя¬зана с нелинейностью уравнений квантовой хромодина¬мики, описывающих взаимодействие кварков.

В настоящее время известно 36 кварков и антикварков, 8 глюонов, 12 лептонов и фотон, т.е. число фундаментальных элементарных частиц оказывается равным 57

16. Принципы квантовой механики Соотношение неопределенности Гейзенберга. Логическим развитием идеи о корпускулярных свойствах света (“волны могут вести себя подобно частицам”) явилось признание волновых свойств у частиц (электрон, нейтрон, протон и т.д. мало отличаются от фотонов и подобно им могут проявлять волновые свойства).Например, в случае очень близкого расположения небольших щелей в опыте Юнга с источником электронов вместо светового так же возникает интерференционная картина. Рентгеновские лучи (фотоны с очень большой энергией) при дифракции на трехмерной кристаллической структуре дают картинку, сходную с получающейся при дифракции электронов. Рассуждения, аналогичные ранее проделанным для интерферирующих фотонов, требуют признания невозможности постановки эксперимента по выяснению через какое из двух отверстий пролетел электрон при условии сохранения интерференционной картины. В отличие от фотона, электрон (или другая элементарная частица) в принципе могут быть зарегистрированы без их обязательного поглощения (например, по рассеянному на них свету). Однако, любое взаимодействие обладающих малыми частиц с другими телами (даже со светом) неизбежно приводит к существенным изменениям состояний самих наблюдаемых частиц, что ведет к разрушению интерференционной картины (фотоны при рассеянии передают частицам импульс порядка , попытка уменьшения которого за счет уменьшения частоты освещающего излучения неизбежно приводят к потере информации о положении частицы из-за явления дифракции). Многочисленные мысленные эксперименты, подобные рассмотренному приводят к выводу о невозможности одновременного измерения координаты и импульса частиц со сколь угодно высокой наперед заданной точностью. Выражающее принципиальные ограничения на точность измерений неравенство, связывающее минимально возможные погрешности было предложено Гейзенбергом и носит название соотношения неопределенности: . Соотношение неопределенности Гейзенберга явилось предметом пристального внимания философии, поскольку провозглашаемый принципиальный запрет перекликался с идеями сторонников агностических учений, отрицающих возможность познания окружающего нас мира. Несмотря на то, что подавляющее большинство естествоиспытателей уверено в познаваемости мира, требовался серьезный философский анализ возникшей проблемы. По-видимому, выход состоит в признании неприменимости методов описания макроскопических объектов к объектам микромира: если объект не обладает какими-либо характеристиками, то невозможности их точного экспериментального определения вовсе не означает невозможности изучения объекта (бессмысленность попыток получить экспериментально ответ на вопрос о длине хвоста черта не означает невозможности познания мира в целом). Т.о. соотношение неопределенности является “подсказкой” природы о том, что привычный язык классической кинематики и динамики Ньютона малопригоден для описания процессов с участием объектов микромира. Особенности квантово-механического описания. “Правила игры” квантовомеханического описания нерелятивистских макро- и микроскопических объектов не могут быть выведены, исходя из “привычных” классических законов, поскольку являются более общими и включают в себя эти классические законы, как частный случай, получаемый в виде чисто математических следствий из постулируемых принципов квантовой механики (принцип соответствия должен выполняться).

Вскоре такие частицы были обнаружены в космических лучах (пи-мезоны), но дальнейшие эксперименты показали их непричастность к ядерным силам. Однако выдвинутая гипотеза все же оказалась жизнеспособной: впоследствии были обнаружены похожие на ранее открытые мезоны частицы, свойства которых согласовывались с предсказанными на основе анализа ядерных сил. Электропроводность кристаллов. Системы с двумя состояниями обладают двумя энергетическими подуровнями . Увеличение числа эквивалентных состояний приводит к появлению большего числа подуровней. Примером системы с большим числом состояний может служить электрон в идеальном кристалле, который может быть локализован вблизи каждого из регулярно расположенных ионов, что соответствует набору базисных состояний: (рис. 20 6). Самой низкой энергии соответствует симметричная линейная комбинация базисных состояний: , другие ортогональные линейные комбинации дают систему из близкорасположенных друг к другу энергетических подуровней. При увеличении числа атомов в кристалле подуровни сливаются в сплошную полосу - энергетическую зону, соответствующую непрерывному набору разрешенных значений энергии электрона. Поскольку свободная частица в пустом пространстве так же может обладать энергией из непрерывного набора, поведение электрона в идеальном бесконечном кристалле весьма сходно с поведением свободной частицы. Этим объясняется возможность существования электропроводности в твердых кристаллических телах. Уравнение Шредингера. При описании движения микрочастиц в пространстве в качестве базисного удобно выбрать непрерывный набор состояний с определенными координатами , для каждого из которых может быть записано уравнение, аналогичное (10). Конкретный вид оператора Гамильтона для этого случая был правильно угадан Шредингером и имеет вид, аналогичный классическому выражению для механической энергии: , где - оператор импульса, - оператор потенциальной энергии. Наибольший практический интерес представляют вероятности обнаружить находящуюся в стационарном состоянии частицу в заданной точке пространства R. В соответствии с общими правилами квантовой механики эта вероятность дается квадратом модуля соответствующей амплитуды, называемой волновой функцией: . Анализ математических свойств стационарного уравнения Шредингера показывает, что в случаях, когда область классически возможного движения частицы в пространстве ограничена, разрешенным является только дискретный набор энергетических уровней. При неограниченном движении энергетический спектр непрерывен. В простейшем случае стационарных решений для атома водорода связанным состояниям (электрон находится вблизи ядра) соответствует набор разрешенных значений энергии, полностью совпадающий с вычисленными в рамках первой модели Бора и прекрасно согласующийся с экспериментом (рис. 20 7). В ионизованном состоянии (электрон ушел от ядра на бесконечно большое расстояние) частица может обладать любым значением энергии. Список литературы

Как это уже не раз случалось в физике, ее создание потребовало развития нового математического аппарата, адекватно описывающего сформулированные в ее рамках новые физические идеи. Математический формализм квантовой механики: состояния, амплитуды, операторы. Существует несколько альтернативных математических формализмов, отвечающих основным физическим идеям квантовой механики. Один из подходов состоит в рассмотрении состояний физической системы как векторов в пространстве, размерность которого определяется числом ее взаимоисключающих состояний, называемых базисными (на рис. 20 2 в качестве примера приведены два таких состояния молекулы бензола с различными конфигурациями химических связей, допустимых классической теорией валентности). Под скалярным произведением двух состояний понимается комплексное число - амплитуда, квадрат модуля которой дает вероятность найти систему в одном из перемножаемых состояний, если точно известно, что она находится в другом. В примере с молекулой бензола , где через обозначено состояние, соответствующее “равномерному распределению химических связей” , к признанию реального существования которого химия шла достаточно долгим путем. Для описания измеряемых физических величин F в квантовой механике вводятся операторы , действия которых на векторы состояний в общем случае приводят к появлению новых векторов: (6) (так на языку математики описывается тот факт, что процедура измерения оказывает влияние на изучаемую квантово-механическую систему). Наблюдаемое на опыте среднее значение физической величины в заданном состоянии системы определяется диагональным матричным элементом оператора этой величины: . Т.о. математический аппарат современной квантовой механики ориентирован на вычисления вероятностей пребывания физических систем в тех или иных состояниях и средних значений физических величин, характеризующих эту систему, т.е. как раз те величины, которые могут быть измерены в реальном эксперименте. Эволюция во времени квантово-механических систем. Для описания изменения системы во времени вводится оператор эволюции, связывающий ее состояния в два близких момента: . Если оператор эволюции известен, его последовательное применение к исходному состоянии системы позволяет проследить за ее временным развитием, т.е. решить основную задачу естествознания. Обычно оператор эволюции за бесконечно малый промежуток времени записывают в виде , где - оператор Гамильтона. Подстановка выражения (9) в (8) приводит к основному уравнению квантовой механики , играющему столь же важную роль в квантовой теории, как законы Ньютона в классическом естествознании. По своему смыслу оператор Гамильтона является обобщением классического понятия энергии, поскольку для частного случая стационарной изолированной системы (где энергия сохраняется) уравнение (10) имеет решение , совпадающее с волной ДеБройля и удовлетворяющее стационарному уравнению . Стационарные состояния квантово-механических систем. При решении уравнения (11) определяются стационарные состояния системы и соответствующие им значения энергии W. В случае дискретного набора разрешенных энергий говорят об энергетических уровнях системы, в случае непрерывного набора - о непрерывном спектре энергий