
- •1.Естествознание. Тенденции в развитии естествознания. Темпы развития естествознания. Физические революции. Фундаментальные и прикладные науки (сущность и проблемы).
- •2. Естествознание – основа современных наукоёмких технологий. Технологии (понятие, история, классификация). Научно-технические революции. Жизненный цикл технологии.
- •3.Инновации. Виды инноваций. Инновационные технологии. Жизненный цикл нововведений
- •4. Техносфера. Особенности развития технологий. Обновление технологий и подъёмы в экономике.
- •5. Представления о материи, движении, пространстве и времени. Понятие о структурных уровнях организации материи. Мегамир, макромир и микромир.
- •6. Фундаментальные взаимодействия.
- •7. Механика как основа многих технологий. Основные законы и понятия механики.
- •8. Законы сохранения количества движения (импульса), энергии и момента количества движения, их применение в технике и технологиях. Принцип реактивного движения.
- •9. Применение фазовых переходов в технике и технологиях.
- •10. Элементная база компьютера. Развитие твердотельной электроники. Технологии микроэлектроники. Развитие нанотехнологии.
- •11. Основные представления современной химии. Эволюционная химия. Синтез новых материалов и применение новых материалов в технике и технологиях.
- •12. Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д. И. Менделеева. Трансурановые элементы и их применение в технике и технологиях.
- •13. Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции и их применение в технике и технологиях.
- •14. Естественно-научные основы лазерных технологий. Особенности лазерного излучения. Применение лазеров в технике и технологиях.
- •15. Современные представления об эволюции Вселенной, галактик, звезд и звездных систем.
- •16. Солнечная система. Законы небесной механики – законы Кеплера. Солнечно-земные связи. Учение а. Л. Чижевского. Ракетно-космические технологии.
- •17. Гравитационное взаимодействие тел. Закон всемирного тяготения Ньютона. Космические скорости.
- •18. Самоорганизация в живой и неживой материи. Синергетика и её применение в технике и технологиях.
- •19. Основные понятия термодинамики. Первое и второе начало термодинамики.
- •20. Синтез органических и неорганических соединений. Биосинтез. Применение синтезированных соединений в технике и технологиях.
- •22. Электрический ток и магнитное поле и их применение в технике и технологиях. Напряженность магнитного поля и закон полного тока. Энергия магнитного поля.
- •23. Геометрическая оптика и волновая теория света. Дисперсия, явления интерференции и дифракции, поляризация и их применение в технике и технологиях.
- •24. Металлургические технологии.
- •25. Классификация двигателей и принципы их работы.
- •26. Информационные технологии. Суперкомпьютер. Нейронные сети. Технологические возможности реализации высокой информационной плотности.
- •27.Энергетическое машиностроение. Станкостроение. Робототехника.
- •28. Наночастицы. Нанотехнологии. Нанолитография. Наномедицина. Нанобиоэлектроника. Молекулярная самосборка. Наноматериалы.
- •29. Машиностроительные технологии.
- •30. Основные научные достижения в биологии и генетике. Роль днк и рнк в системе управления генетической информацией. Наследственность и изменчивость.
- •31. Ген. Геном. Генотип. Генная инженерия. Клонирование.
- •32.Биотехнологии – прикладное направление современной биологии. Применение биотехнологий в различных отраслях народного хозяйства.
- •33. Технологии строительства.
- •34. Развитие химических технологий. Химические процессы. Виды катализа. Применение катализа в химических технологиях.
- •35.Транспортные технологии. Экономичный автомобиль. Виды транспорта (авиа, автомобильный, железнодорожный, речной, морской, трубопроводный) и их характеристика.
- •36.Научные методы исследования. Принципы познания.
- •Формы познания
- •37. Сознание и интеллект. Человек и эмоции. Исследования человеческого мозга и возможностей человека.
- •1. Формы движения материи. Потенциальная и кинетическая энергии, их природа и взаимопревращение.
- •2. Технологии лёгкой промышленности.
- •3. Сельскохозяйственные и лесные технологии.
- •4.Добывающая и перерабатывающая промышленность. Инновации в добывающей и перерабатывающей промышленности.
- •5. Сущность процесса измерения. Виды измерений. Роль измерений в науке, технике. Погрешности измерений, их виды, причины возникновения.
- •6.Использование достижений естественных наук в приборостроении. Приборостроение.
- •7. Звуковые волны. Инфразвук, гиперзвук, ультразвук и его применение в технике и технологиях.
- •8. Строительные материалы. Технологии производства строительных материалов.
- •9. Простые машины (рычаг, блок, наклонная плоскость, клин). Строительные машины.
- •10. Классы точности измерительных приборов. Абсолютные и относительные погрешности. Измерительные технологии.
- •11. Промышленная переработка топлива (коксование угля, крекинг нефти, переработка нефти методом ректификации).
- •12. Тепловая машина. Цикл Карно. Паровая машина. Использование тепловых машин в технике и технологиях.
- •13. Физические эффекты (эффект эжекции, гироскопический эффект, центробежная сила, эффект Доплера, акустическая кавитация, диффузия, гидростатическое давление) в машиностроении.
- •14. Эффект Доплера и его применение в технике и технологиях.
- •15. Выделение информации на фоне помех. Использование явления резонанса для выделения полезного сигнала. Использование и применение явления резонанса в технике и технологиях.
- •16. Квантовые эффекты в микромире. Виды спектров. Спектральный анализ и его применение в технике и технологиях.
- •17.Новые технологии передачи и хранения информации.
- •19. Основные закономерности цепей постоянного тока. Закон Ома, 1-е и 2-е правила Кирхгофа. Применение постоянного тока в технике и технологиях.
- •20. Основные закономерности цепей переменного тока. Закон Ома для цепей переменного тока. Последовательный и параллельный резонансы. Явление резонанса и его применение в технике и технологиях.
- •21. Техническое использование переменного тока.
- •22. Закон Фарадея и принцип действия электрических трансформаторов. Линии электропередач.
- •23. Взаимодействие электромагнитного поля и движущегося заряда. Сила Лоренца. Принцип действия электрогенераторов.
- •24. Электромагнитное излучение и его природа. Шкала электромагнитных волн, области применения различных частотных диапазонов в технике и технологиях.
- •25. Свойства металлов (электропроводность, звукопроводность, твёрдость, пластичность, ковкость, плавкость, плотность).
- •26. Сущность параметров давления и температуры, их влияние на фазовое состояние вещества, использование на практике, в технике и технологиях.
- •27. Источники энергии. Способы преобразования энергии. Тэс, гэс, аэс. Альтернативная энергетика.
- •29. Поведение веществ в электрических полях. Диэлектрики и пьезоэлектрики и их применение технике и технологиях.
- •30. Поведение веществ в магнитных полях. Ферромагнетики и ферриты и их применение технике и технологиях.
- •31. Новые материалы. Синтетические материалы. Полимерные материалы. Термопласты и реактопласты, эластомеры, пластмассы и их применение технике и технологиях.
- •32. Производство металлов (сталь, чугун, алюминий).
- •33. Радиоактивность и закон радиоактивного распада. Изотопы. Технологии утилизации радиоактивных отходов и материалов.
- •34. Энергосберегающие технологии.
- •35. Промышленные биотехнологии. Пищевые технологии. Производство лекарственных препаратов, продуктов питания.
- •36. Топливные элементы. Водородная энергетика.
- •37. Электрогенератор. Электродвигатель. Применение их в технике и технологиях.
12. Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д. И. Менделеева. Трансурановые элементы и их применение в технике и технологиях.
Химические св-ва вещ-ва зависят от того, из каких химических элементов оно состоит и от структуры молекул вещ-ва(структурная изомерия) и от пространственной конфигурации молекул (конформация и стереомерия). Вещ-ва, имеющие одинаковый состав и структуру, имеют одинаковые химические св-ва. Изомерия-явление, заключающееся в существовании хим.соединений, одинаковых по составу и молекулярной массе, но разных по строению и расположению атомов в пространстве и вследствие этого по св-ам.
Конформация- пространственное расположение атомов в молекуле определенной конфигурации. Стереоизомерия- возникает в результате различий в пространственной конфигурации молекул, имеющих одинаковое химическое строение.
Попытки систематизации химических элементов по их химическим свойствам делались многими учеными, начиная с 30-х годов XIX в. Д. И. Менделеев в 1869 г. разработал таблицу, в основу кот. положены атомные веса эл-тов, т. е. число протонов в ядрах атомов. Выяснилось, что химические св-ва эл-тов периодически зависят от этого числа. В 1911 г. Резерфордом была разработана планетарная модель атома. В основе теории лежит представление о закономерностях построения электронных оболочек (уровней) и подоболочек (подуровней) в атомах по мере роста числа протонов в ядре атома Z и, след-но, числа электронов в оболочках атома. Сходство электронных конфигураций свободных атомов коррелирует с подобием их химического поведения.
Химическая связь - это взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Валентность атомов показывает число связей, образуемых данным атомом с соседними атомами в молекуле. Основными видами химических связей явл-ся ковалентная и ионная.
В ковалентной связи электроны атомов образуют общую орбиталь. В ионных связях электрон передается от одного атома к другому, и образуются противоположно заряженные атомы. Химические реакции - превращения одних веществ в другие, отличные от исходных по химическому составу или строению.
Периодический закон элементов Менделеева: свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера в таблице Менделеева).
Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.
Периодическое изменение свойств элементов с увеличением порядкового номера объясняется периодическим изменением числа электронов на их внешних энергетических уровнях.
13. Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции и их применение в технике и технологиях.
Химическая связь — явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы. Химическое равновесие — состояние химической системы, в котором обратимо протекает одна или несколько химических реакций, причём скорости в каждой паре прямая-обратная реакция равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем. Принцип Ле Шателье-Брауна: Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации. Факторы влияющие на химическое равновесие:1) температура. При увеличении температуры химическое равновесие смещается в сторону эндотермической (поглощение) реакции, а при понижении в сторону экзотермической (выделение) реакции. CaCO3=CaO+CO2 -Q t↑ →, t↓ ←N2+3H2↔2NH3 +Q t↑ ←, t↓ →2) давление. При увеличении давления химическое равновесие смещается в сторону меньшего объёма веществ, а при понижении в сторону большего объёма. Этот принцип действует только на газы, т.е. если в реакции участвуют твердые вещества, то они в расчет не берутся. CaCO3=CaO+CO2 P↑ ←, P↓ →1моль=1моль+1моль3) концентрация исходных веществ и продуктов реакции. При увеличении концентрации одного из исходных веществ химическое равновесие смещается в сторону продуктов реакции, а при увеличении концентрации продуктов реакции-в сторону исходных веществ.S2+2O2=2SO2 [S],[O]↑ →, [SO2]↑ ←.Катализаторы не влияют на смещение химического равновесия! Эндотермические реакции- реакции, сопровождающиеся выделением теплоты. К таким реакциям относятся реакции разложения молекул на свободные атомы, восстановление металлов из руд, фотосинтез в растениях. Экзотермические реакции- реакции, сопровождающиеся выделением теплоты. Такими реакциями являются горение, нейтрализация. Применение: в ресурсоэнергосберегающих технологиях, в химической, военной, строительной, пищевой, горнодобывающей промышленности.