Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Естествознание 1.docx
Скачиваний:
0
Добавлен:
26.12.2019
Размер:
205.39 Кб
Скачать

24. Металлургические технологии.

Металлургический процесс — совокупность методов добычи и производства металла. Металлургический процесс подразделяется по способу производства:

  • Металлургический процесс производства цветных металлов — Цветная металлургия;

  • Металлургический процесс производства чёрных металлов — Чёрная металлургия;

Металлургические процессы подразделяются на три основных категории:

  • Гидрометаллургические — протекают в водных растворах при температуре до 300 градусов;

  • Пирометаллургические — протекают при температурах более 300 градусов;

  • Электрометаллургические — протекают в водных растворах или расплавах с протеканием электрического тока соответственно через раствор или расплав, при этом на катоде восстанавливается более чистый металл, чем используемый при изготовлении анода.

Основная цель металлургических процессов — получение металлов без примесей. В широком смысле к металлургическим процессам можно отнести всю цепочку преобразований от руды до товарного слитка металла:

  1. Добыча руды: шахтным (закрытым) или карьерным (открытым) способом.

  2. Дробление руды.

  3. Измельчение руды.

  4. Обогащение руды (гравитационным, флотационным или электромагнитным способом).

  5. Металлургическая переработка концентрата.

Рафинирование металла (для благородных металлов — аффинаж).

25. Классификация двигателей и принципы их работы.

Двигатель, мотор — устройство, преобразующее какой-либо вид энергии в механическую. Этот термин используется с конца XIX века наряду со словом «мотор», которым с середины XX века чаще называют электродвигатели и двигатели внутреннего сгорания.

Двигатели подразделяют на первичные и вторичные. К первичным относят непосредственно преобразующие природные энергетические ресурсы в механическую работу, а ко вторичным — преобразующие энергию, выработанную или накопленную другими источниками.

К первичным двигателям относятся ветряное колесо, использующее силу ветра, водяное колесо и гиревой механизм — их приводит в действие сила гравитации, тепловые двигатели — в них химическая энергия топлива или атомная энергия преобразуются в другие виды энергии. Ко вторичным двигателям относятся электродвигатель(электромотор), пневмодвигатель, гидродвигатель (гидромотор).Двигатели могут использовать следующие типы источников энергии: электрические; постоянного тока (электродвигатель постоянного тока);переменного тока (синхронные и асинхронные);электростатические;химические;ядерные;гравитационные;пневматические;гидравлические;лазерные.

26. Информационные технологии. Суперкомпьютер. Нейронные сети. Технологические возможности реализации высокой информационной плотности.

Информационные технологии - широкий класс дисциплин и областей деятельности, относящихся к технологиям создания, управления и обработки данных, в том числе с применением вычислительной техники. В последнее время под информационными технологиями чаще всего понимают компьютерные технологии. В частности, ИТ имеют дело с использованием компьютеров и программного обеспечения для хранения, преобразования, защиты, обработки, передачи и получения информации.

Суперкомпьютер- вычислительная машина, значительно превосходящая по своим техническим параметрам большинство существующих компьютеров. Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках подхода распараллеливания вычислительной задачи. Нейронные сети - математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети Маккалока и Питтса. Впоследствии, после разработки алгоритмов обучения, получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др. ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров. С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов и т. п. С математической точки зрения, обучение нейронных сетей — это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть — способ решения проблемы эффективного параллелизма. Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение.

Технологические возможности реализации высокой информационной плотности.

Современная технология позволяет изготавливать тонкопленочный элемент, ширина либо длина которого составляет примерно 1 мкм, что более чем на порядок меньше размера элемента серийно изготавливаемых магниторезистивных преобразователей. Существенное уменьшение толщины магниторезистивного элемента даже с использованием самых перспективных технологических приемов сопряжено с нарушением однородности по толщине, что влечет за собой изменение и электрических, и магнитных свойств. Технология сегодняшнего дня позволяет изготавливать магниторезистивный элемент, минимальное поперечное сечение которого составляет 0,030 мкм2, что в принципе дает возможность воспроизвести информацию, записанную с поверхностной плотностью около 33 бит/мкм2. Такая плотность приблизительно на порядок меньше соответствующей предельной плотности, к которой допускает приблизиться реальный магнитный носитель - с кобальт-хромовым рабочим слоем. Если принять во внимание технологические возможности ближайшего будущего, когда линейный размер элемента уменьшится примерно на порядок, то магниторезистивный преобразователь с таким элементом позволит воспроизвести информацию, записанную с поверхностной плотностью, приближающейся к 400 бит/мкм2.

Это означает, что в обозримом будущем магниторезистивный преобразователь, опираясь на перспективную технологию, должен догнать магнитный носитель, и тогда их предельные характеристики плотности сравняются. При этом следует помнить, что предельные возможности и реальные устройства - это не одно и то же. В то же время без реальных возможностей не бывает и реальных устройств. Другое дело, что между ними, как правило, лежит непроторенный путь, который при недостаточно объективной оценке каких бы то ни было возможностей может оказаться безысходным. В данном случае правильный путь может выбрать практик-разработчик, каждое действие которого обосновано научным пониманием решаемой им проблемы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]