
- •Вопросы на гэк 2012
- •1. Нелинейные сар. Понятия: «пространство состояний», «фазовая траектория», «фазовый портрет».
- •2. Проблема двойственности в линейном программировании.
- •3. Составляющие информационной системы (ис). Модели жизненного цикла ис.
- •4. Методы определения оптимальных параметров настройки промышленных регуляторов.
- •5. Автоколебания в сар. Определение параметров автоколебаний с помощью графических построений.
- •6. Математическая постановка задач оптимального управления. Пример: «Нажимное устройство реверсивного прокатного стана».
- •7. Субд. Функции субд. Транзакции. Свойства транзакций.
- •8.20. Оценка качества сар по временным характеристикам
- •9. Представление импульсного элемента при исследовании импульсных сар.
- •10. Синтез сар оптимальной по быстродействию.
- •11. Этапы канонического проектирования информационных систем.
- •12. Принципы системного подхода в моделировании. Сетевые модели.
- •13. Связь между спектрами сигналов на входе и выходе простейшего импульсного элемента. Теорема Котельникова.
- •14. Анализ методов решения задач оптимального управления.
- •15. Модели управления передачей, обработкой и хранением данных в информационных системах на основе технологии «клиент-сервер»
- •16. Непрерывно-стохастические модели на примере систем массового обслуживания.
- •17. Процессы конечной длительности в импульсных сар.
- •18. Метод динамического программирования.
- •19. Составляющие внемашинного информационного обеспечения систем управления. Системы классификации и кодирования информации.
- •21. Алгебраический аналог критерия устойчивости Гурвица для исар.
- •22. Системы управления на основе нечеткой логики.
- •23. Реляционная модель данных. Понятие функциональной зависимости. Процесс нормализации базы данных.
- •Целостность данных
- •Реляционная алгебра
- •Нормализация базы данных
- •Номер преподавателя Группа Сущность Преподаватель - группа
- •24. Синтез сар по логарифмическим характеристикам.
- •25. Метод гармонической линеаризации нелинейностей.
- •26. Системы управления на основе искусственных нейронных сетей.
- •27. Цифровые регуляторы и методы их настроек.
- •28. Аппроксимация кривых разгона методом площадей.
- •29. Характер движения в нелинейных и линейных сар.
- •30. Техническая диагностика. Математические основы технической диагностики.
- •31. Определение оптимальных параметров настройки пи – регуляторов.
- •32. 52. Назначение и функции операционной системы. Классификация и характеристика операционных систем.
- •33. 73. Устойчивость линейных сар. Признаки устойчивости. Запасы устойчивости линейных сар.
- •34. Статистические методы распознавания. Метод Бейеса.
- •35. Определение оптимальных параметров настройки пид – регуляторов.
- •36. Реляционная алгебра Кодда
- •37. Устойчивость линейных непрерывных систем. Критерий устойчивости Найквиста.
- •38. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент.
- •Черный ящик
- •39. Определение, назначение и классификация компьютерных сетей. Базовые топологии локальных компьютерных сетей.
- •40. Назначение, классификация и характеристика запоминающих устройств эвм.
- •41. Критерий устойчивости а.М. Ляпунова для нелинейных систем.
- •42. Частотные методы идентификации динамических объектов.
- •43. Определение, назначение и классификация компьютерных сетей. Топология глобальной компьютерной сети.
- •44. Устройства ввода и вывода информации эвм.
- •45. Виды корректирующих средств в сар. Недостатки последовательной коррекции.
- •46. Классификация объектов управления по статическим и динамическим характеристикам.
- •47. Эталонная модель взаимодействия открытых систем osi. Характеристика уровней osi.
- •48. Основные типы регистров и их функции в эвм.
- •49. Гармоническая линеаризация. Физический смысл коэффициентов гармонической линеаризации.
- •50. Идентификация объектов по временным характеристикам. Определение кривой разгона объекта по его импульсной характеристике.
- •51. Программное обеспечение компьютерных сетей.
- •53. Устойчивость нелинейных систем. Метод л.С. Гольдфарба.
- •54. Идентификация динамических систем. Активные и пассивные методы идентификации.
- •55. Характеристика нормальных форм реляционной модели данных.
- •56. Интерфейсы в эвм. Типы и методы взаимодействия устройств вычислительной системы.
- •57. Точные методы исследования устойчивости и автоколебаний в нелинейных системах. Частотный метод в.М. Попова.
- •58. Методы аппроксимации кривых разгона объекта.
- •59. Пользовательские технологии Интернета.
- •60. Архитектура процессора эвм и назначение его функциональных блоков.
- •61. 65. Статические характеристики нелинейных элементов.
- •62. Обеспечивающие подсистемы информационно -управляющих систем и их характеристики.
- •63. Протоколы взаимодействия функциональных блоков компьютерной сети: понятие, виды, иерархия.
- •64. Система прерываний эвм. Механизм обработки прерываний в архитектуре эвм семейства intel.
- •66. 77. Промышленные регуляторы, их назначение и передаточные функции.
- •67. Функциональные подсистемы информационно- управляющих систем и их характеристики.
- •68. Основные принципы построения компьютерных сетей.
- •69. Классификация задач оптимального управления.
- •70. Организационные подсистемы информационно- управляющих систем и их характеристики.
- •71. Подходы к классификации моделей. Обоснование введения моделей. Классификация моделей по способу представления.
- •72. Организация системы ввода-вывода через bios
- •74. Принципы построения автоматизированных систем управления.
- •75. Классификация моделирования. Комбинация видов моделирования при исследовании сложных объектов. Имитационное и компьютерное моделирование.
- •76. Архитектура эвм и назначение основных блоков.
- •78. Состав интегрированной системы автоматизации предприятия.
- •79. Математическая модель и математическое моделирование. Этапы математического моделирования.
- •80. Логические основы проектирования цифровых устройств. Понятие функционально- полного набора логических элементов.
- •Процессы контроля и восстановления информации в эвм. Коды Хемминга: исправление одиночных ошибок, обнаружение двойных ошибок.
- •Виртуальная память и ее реализация. Сегментно-страничная организация памяти и динамическое преобразование адресов. Механизм замещения страниц.
- •Физический смысл коэффициентов гармонической линеаризации.
- •Математические ожидания сигналов на выходе стационарных сар.
- •Классификация систем автоматического регулирования.
- •Понятие и составляющие информационной системы (ис). Модели жизненного цикла ис. Классы задач, решаемые ис.
- •Система моделей предметной области. Функционально-ориентированная модель предметной области.
- •Объектная структура
- •Функциональная структура
- •Структура управления
- •Организационная структура
- •Техническая структура
- •Оперативная аналитическая обработка данных: концепции и технологии.
- •Принципы адресации компьютеров в компьютерной сети.
- •Контроллер прерываний от внешних устройств в архитектуре эвм семейства intel. Программно-аппаратное взаимодействие контроллера прерываний и микропроцессора.
Контроллер прерываний от внешних устройств в архитектуре эвм семейства intel. Программно-аппаратное взаимодействие контроллера прерываний и микропроцессора.
Сигналы внешних аппаратных прерываний поступают в микропроцессор не непосредственно, а через контроллер прерываний. В качестве него используется микросхема Intel8259a, которая имеет 8 входных линий, называемых линиями запроса прерывания (Interrupt Request, IRQ). Обычно в системе бывает 2 таких микросхемы, одна из которых (ведущая) подключается непосредственно к микропроцессору, а вторая (ведомая) – к входу IRQ2 ведущей микросхемы. Таким образом, всего рассматривается 15 входных линий запросов прерываний от внешних устройств. Иногда этого не хватает, и на одной линии запроса «висят» несколько устройств, вследствие чего операционной системе приходится прилагать дополнительные усилия, чтобы разобраться, откуда пришёл сигнал.
Выходами микросхемы контроллера являются сигнал INT, идущий на вход микропроцессора (CPU), и номер вектора прерывания. Обратная связь микропроцессора с контроллером осуществляется с помощью сигнала INTA. Схема сопряжения контроллера (CIED, Controller Interrupts of External Units, назовём его так) и CPU (Central Processing Unit, центрального процессора) приводится на следующей схеме функционирования (рис.1)
Сигнал прерывания, поступая в контроллер, доходит до микропроцессора не сразу.
Во-первых, в схеме контроллера присутствует регистр маски, биты которого могут быть установлены программно через порт 21h (A1h для ведомого контроллера). Наличие 1 в соответствующем бите этого 8-битного регистра запрещает прохождение сигнала от соответствующего устройства, 0 – разрешает.
Во-вторых, поступивший в контроллер запрос на обработку прерывания блокирует в нём прохождение сигналов от устройств текущего и более низкого приоритета до тех пор, пока микропроцессор не разблокирует их сигналом INTA, возникающим при подаче команды EOI (END OF INTERRUPT). Эта команда реализуется засылкой специального кода (20h) в порты 20h ведущего и A0h ведомого контроллера. Сигналы, поступившие на неразблокированные линии контроллера некоторое время могут ожидать обслуживания на входе, но до процессора не дойдут.
Приоритеты устройств стандартно расположены в порядке «сверху вниз» на рис1. (IRQ0 имеет наивысший приоритет, IRQ7 – наинизший, приоритеты IRQ8 – IRQ15 расположены между приоритетами IRQ1 и IRQ3. Однако контроллер прерываний – программируемое устройство, и все его регистры (маски, приоритеты, номера векторов прерываний от внешних устройств) могут быть изменены при загрузке операционной системы, и даже во время работы.
В третьих, сигнал прерывания на выходе из контроллера возбуждает линию INT, и одновременно формирует на другой линии номер вектора прерывания. Этот номер формируется из номера IRQ и так называемого «базового вектора», который равен 8 для ведущей и 70h для ведомой микросхемы (в реальном режиме; в защищённом режиме WINDOWS перепрограммирует эти номера.) По номеру прерывания CPU определяет вектор прерывания из таблицы векторов прерываний (ТВП, или IDT – Interrupt Data Table), расположенной в первом килобайте основной памяти (реальный режим). Структура ТВП следующая:
Табл. 1
IP255 |
CS255 |
. . . |
|
IP1 |
CS1 |
IP0 |
CS0 |
Каждая строка таблицы содержит два слова (4 байта) – новое содержимое регистров IP и CS при входе в программу – обработчик, то есть её косвенный адрес. Эти значения автоматически загружаются в названные регистры при поступлении запроса на обработку прерывания. Старое содержимое регистров FLAGS, CS и IP сохраняется в стеке. В новом регистре FLAGS аппаратно обнуляется бит IF, что вызывает запрет на поступление прерываний от любых внешних устройств. Программа-обработчик прерывания (ПОП), допускающая обработку вложенных прерываний (т.е. если её можно прервать для выполнения обработки более приоритетного события) должна сама установить флаг IF в 1 в той точке своего исполнения, начиная с которой её можно прерывать.
В конце своего исполнения обработчик события должен разблокировать контроллер для данного и более низких приоритетов, послав в него сигнал EOI, и вернуть управление в прерванную программу командой IRET, восстанавливающей из стека регистры FLAGS, CS и IP.
Для защищённого режима принцип обработки остаётся тем же самым, но существуют следующие отличия:
ТВП может быть расположена в любом месте ОП. Указателем на неё является регистр IDTR;
Строками ТВП являются 8-байтные записи, содержащие более подробную информацию (вместо нового IP там задается EIP, а также ряд индикаторов);
Сами события делятся на сбои (ошибки), ловушки и аварии;
В некоторых случаях в вершине стека сохраняется код ошибки.
При входе в обработчик учитываются так называемые «уровни привилегий» прерванной задачи и обработчика события.
Детально работу в расширенном режиме мы не рассматриваем.
Пользовательская или системная программа может создать свой собственный обработчик события, или дополнить системный обработчик своими функциями. Для этого необходимо переопределить в ТВП адрес входа в обработчик на свою программу, и при необходимости вызвать из неё системный обработчик.