
- •Вопросы на гэк 2012
- •1. Нелинейные сар. Понятия: «пространство состояний», «фазовая траектория», «фазовый портрет».
- •2. Проблема двойственности в линейном программировании.
- •3. Составляющие информационной системы (ис). Модели жизненного цикла ис.
- •4. Методы определения оптимальных параметров настройки промышленных регуляторов.
- •5. Автоколебания в сар. Определение параметров автоколебаний с помощью графических построений.
- •6. Математическая постановка задач оптимального управления. Пример: «Нажимное устройство реверсивного прокатного стана».
- •7. Субд. Функции субд. Транзакции. Свойства транзакций.
- •8.20. Оценка качества сар по временным характеристикам
- •9. Представление импульсного элемента при исследовании импульсных сар.
- •10. Синтез сар оптимальной по быстродействию.
- •11. Этапы канонического проектирования информационных систем.
- •12. Принципы системного подхода в моделировании. Сетевые модели.
- •13. Связь между спектрами сигналов на входе и выходе простейшего импульсного элемента. Теорема Котельникова.
- •14. Анализ методов решения задач оптимального управления.
- •15. Модели управления передачей, обработкой и хранением данных в информационных системах на основе технологии «клиент-сервер»
- •16. Непрерывно-стохастические модели на примере систем массового обслуживания.
- •17. Процессы конечной длительности в импульсных сар.
- •18. Метод динамического программирования.
- •19. Составляющие внемашинного информационного обеспечения систем управления. Системы классификации и кодирования информации.
- •21. Алгебраический аналог критерия устойчивости Гурвица для исар.
- •22. Системы управления на основе нечеткой логики.
- •23. Реляционная модель данных. Понятие функциональной зависимости. Процесс нормализации базы данных.
- •Целостность данных
- •Реляционная алгебра
- •Нормализация базы данных
- •Номер преподавателя Группа Сущность Преподаватель - группа
- •24. Синтез сар по логарифмическим характеристикам.
- •25. Метод гармонической линеаризации нелинейностей.
- •26. Системы управления на основе искусственных нейронных сетей.
- •27. Цифровые регуляторы и методы их настроек.
- •28. Аппроксимация кривых разгона методом площадей.
- •29. Характер движения в нелинейных и линейных сар.
- •30. Техническая диагностика. Математические основы технической диагностики.
- •31. Определение оптимальных параметров настройки пи – регуляторов.
- •32. 52. Назначение и функции операционной системы. Классификация и характеристика операционных систем.
- •33. 73. Устойчивость линейных сар. Признаки устойчивости. Запасы устойчивости линейных сар.
- •34. Статистические методы распознавания. Метод Бейеса.
- •35. Определение оптимальных параметров настройки пид – регуляторов.
- •36. Реляционная алгебра Кодда
- •37. Устойчивость линейных непрерывных систем. Критерий устойчивости Найквиста.
- •38. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент.
- •Черный ящик
- •39. Определение, назначение и классификация компьютерных сетей. Базовые топологии локальных компьютерных сетей.
- •40. Назначение, классификация и характеристика запоминающих устройств эвм.
- •41. Критерий устойчивости а.М. Ляпунова для нелинейных систем.
- •42. Частотные методы идентификации динамических объектов.
- •43. Определение, назначение и классификация компьютерных сетей. Топология глобальной компьютерной сети.
- •44. Устройства ввода и вывода информации эвм.
- •45. Виды корректирующих средств в сар. Недостатки последовательной коррекции.
- •46. Классификация объектов управления по статическим и динамическим характеристикам.
- •47. Эталонная модель взаимодействия открытых систем osi. Характеристика уровней osi.
- •48. Основные типы регистров и их функции в эвм.
- •49. Гармоническая линеаризация. Физический смысл коэффициентов гармонической линеаризации.
- •50. Идентификация объектов по временным характеристикам. Определение кривой разгона объекта по его импульсной характеристике.
- •51. Программное обеспечение компьютерных сетей.
- •53. Устойчивость нелинейных систем. Метод л.С. Гольдфарба.
- •54. Идентификация динамических систем. Активные и пассивные методы идентификации.
- •55. Характеристика нормальных форм реляционной модели данных.
- •56. Интерфейсы в эвм. Типы и методы взаимодействия устройств вычислительной системы.
- •57. Точные методы исследования устойчивости и автоколебаний в нелинейных системах. Частотный метод в.М. Попова.
- •58. Методы аппроксимации кривых разгона объекта.
- •59. Пользовательские технологии Интернета.
- •60. Архитектура процессора эвм и назначение его функциональных блоков.
- •61. 65. Статические характеристики нелинейных элементов.
- •62. Обеспечивающие подсистемы информационно -управляющих систем и их характеристики.
- •63. Протоколы взаимодействия функциональных блоков компьютерной сети: понятие, виды, иерархия.
- •64. Система прерываний эвм. Механизм обработки прерываний в архитектуре эвм семейства intel.
- •66. 77. Промышленные регуляторы, их назначение и передаточные функции.
- •67. Функциональные подсистемы информационно- управляющих систем и их характеристики.
- •68. Основные принципы построения компьютерных сетей.
- •69. Классификация задач оптимального управления.
- •70. Организационные подсистемы информационно- управляющих систем и их характеристики.
- •71. Подходы к классификации моделей. Обоснование введения моделей. Классификация моделей по способу представления.
- •72. Организация системы ввода-вывода через bios
- •74. Принципы построения автоматизированных систем управления.
- •75. Классификация моделирования. Комбинация видов моделирования при исследовании сложных объектов. Имитационное и компьютерное моделирование.
- •76. Архитектура эвм и назначение основных блоков.
- •78. Состав интегрированной системы автоматизации предприятия.
- •79. Математическая модель и математическое моделирование. Этапы математического моделирования.
- •80. Логические основы проектирования цифровых устройств. Понятие функционально- полного набора логических элементов.
- •Процессы контроля и восстановления информации в эвм. Коды Хемминга: исправление одиночных ошибок, обнаружение двойных ошибок.
- •Виртуальная память и ее реализация. Сегментно-страничная организация памяти и динамическое преобразование адресов. Механизм замещения страниц.
- •Физический смысл коэффициентов гармонической линеаризации.
- •Математические ожидания сигналов на выходе стационарных сар.
- •Классификация систем автоматического регулирования.
- •Понятие и составляющие информационной системы (ис). Модели жизненного цикла ис. Классы задач, решаемые ис.
- •Система моделей предметной области. Функционально-ориентированная модель предметной области.
- •Объектная структура
- •Функциональная структура
- •Структура управления
- •Организационная структура
- •Техническая структура
- •Оперативная аналитическая обработка данных: концепции и технологии.
- •Принципы адресации компьютеров в компьютерной сети.
- •Контроллер прерываний от внешних устройств в архитектуре эвм семейства intel. Программно-аппаратное взаимодействие контроллера прерываний и микропроцессора.
74. Принципы построения автоматизированных систем управления.
Информация непосредственно и неразрывно связана с процессом управления. Самое общее кибернетическое определение управления гласит: управление есть процесс целенаправленной переработки информации.
Управление определяется как функция системы, обеспечивающая либо сохранение совокупности ее основных свойств, либо ее развитие в заданном направлении. И в том и в другом случае управление осуществляется для достижения определенной цели. В системе управления можно выделить две подсистемы: управляющую и управляемую. Первая осуществляет собственно функции управления, вторая является объектом управления.
Внешняя среда и объект правления информируют систему о своем состоянии, управляющая подсистема анализирует эту информацию, вырабатывает управляющее воздействие на объект управления, отвечает на возмущения внешней среды и при необходимости модифицирует цель и структуру всей системы. Объект управления и управляющая система связаны между собой и внешней средой через информационные потоки:
ИП1 - информационный поток из внешней среды в управляющую подсистему, который, с одной стороны, представляет поток нормативной информации, создаваемой государственными учреждениями в части законодательства, а с другой стороны - поток информации о конъюнктуре рынка, создаваемый конкурентами, потребителями, поставщиками;
ИП2 - информационный поток из управляющей подсистемы во внешнюю среду, а именно: отчетная информация, прежде всего финансовая информация в государственные органы, инвесторам, кредиторам, потребителям; маркетинговая информация потенциальным потребителям:
ИПЗ - информационный поток из управляющей подсистемы на объект управления (прямая кибернетическая связь), представляющий совокупность плановой, нормативной и распорядительной информации для осуществления хозяйственных процессов;
ИП4 - информационный поток от объекта управления в управляющую подсистему (обратная кибернетическая связь), который отражает учетную информацию о состоянии объекта управления экономической системой (сырья, материалов, денежных, энергетических, трудовых ресурсов, готовой продукции и выполненных услугах) в результате выполнения хозяйственных процессов. Во второй половине 1960-х годов и в 1970-х гг. получили развитие автоматизированные системы управления (АСУ) сложными объектами хозяйственной деятельности (предприятиями, энергосистемами, отраслями, сложными участками производства).
АСУ - это комплекс технических и программных средств, совместно с организационными структурами (отдельными людьми и коллективом), обеспечивающий управление объектом (комплексом) в производственной, научной или общественной среде. Цель разработки и внедрения АСУ:
повышение эффективности принимаемых решений, особенно в части наилучшего использования всех видов ресурсов и сокращения потерь, достигаемых за счет обеспечения процесса принятия решений своевременной, полной и точной информацией, а также применения математических методов оптимизации;
повышение производительности труда инженерно-технического и управленческого персонала (и его сокращение) за счет выполнения основного объема учетных и расчетных задач на ЭВМ.
Кроме того, внедрение АСУ обычно приводит к совершенствованию организационных структур и методов управления, более гибкой регламентации документооборота и процедур управления, упорядочению использования и создания нормативов, совершенствованию организации производства. Важнейшими принципами построения эффективных АСУ являются:
Принцип интеграции, заключающийся в том, что обрабатываемые данные, однажды введенные в АСУ (базы данных), многократно используются для решения большого числа задач, при этом устраняется дублирование данных и операций их преобразования.
Принцип системности, заключающийся в обработке данных в различных разрезах, чтобы получить информацию, необходимую для принятия решении на всех уровнях и во всех функциональных подсистемах управления;
Принцип комплексности, подразумевающий механизацию и автоматизацию процедур преобразования данных на всех стадиях техпроцесса АСУ.
АСУ подразделяются по функциям:
административно-организационные (например, системы управления предприятием - АСУП, отраслевые системы управления - ОАСУ);
технологическими (автоматизированные системы управления технологическими процессами - АСУТП, в свою очередь подразделяющиеся на гибкие производственные системы - ГПС, автоматизированные системы контроля качества продукции - АСК, системы управления станками и линиями с числовым программным управлением - ЧПУ);
интегрированные, объединяющие функции перечисленных АСУ в различных комбинациях.