
- •Вопросы на гэк 2012
- •1. Нелинейные сар. Понятия: «пространство состояний», «фазовая траектория», «фазовый портрет».
- •2. Проблема двойственности в линейном программировании.
- •3. Составляющие информационной системы (ис). Модели жизненного цикла ис.
- •4. Методы определения оптимальных параметров настройки промышленных регуляторов.
- •5. Автоколебания в сар. Определение параметров автоколебаний с помощью графических построений.
- •6. Математическая постановка задач оптимального управления. Пример: «Нажимное устройство реверсивного прокатного стана».
- •7. Субд. Функции субд. Транзакции. Свойства транзакций.
- •8.20. Оценка качества сар по временным характеристикам
- •9. Представление импульсного элемента при исследовании импульсных сар.
- •10. Синтез сар оптимальной по быстродействию.
- •11. Этапы канонического проектирования информационных систем.
- •12. Принципы системного подхода в моделировании. Сетевые модели.
- •13. Связь между спектрами сигналов на входе и выходе простейшего импульсного элемента. Теорема Котельникова.
- •14. Анализ методов решения задач оптимального управления.
- •15. Модели управления передачей, обработкой и хранением данных в информационных системах на основе технологии «клиент-сервер»
- •16. Непрерывно-стохастические модели на примере систем массового обслуживания.
- •17. Процессы конечной длительности в импульсных сар.
- •18. Метод динамического программирования.
- •19. Составляющие внемашинного информационного обеспечения систем управления. Системы классификации и кодирования информации.
- •21. Алгебраический аналог критерия устойчивости Гурвица для исар.
- •22. Системы управления на основе нечеткой логики.
- •23. Реляционная модель данных. Понятие функциональной зависимости. Процесс нормализации базы данных.
- •Целостность данных
- •Реляционная алгебра
- •Нормализация базы данных
- •Номер преподавателя Группа Сущность Преподаватель - группа
- •24. Синтез сар по логарифмическим характеристикам.
- •25. Метод гармонической линеаризации нелинейностей.
- •26. Системы управления на основе искусственных нейронных сетей.
- •27. Цифровые регуляторы и методы их настроек.
- •28. Аппроксимация кривых разгона методом площадей.
- •29. Характер движения в нелинейных и линейных сар.
- •30. Техническая диагностика. Математические основы технической диагностики.
- •31. Определение оптимальных параметров настройки пи – регуляторов.
- •32. 52. Назначение и функции операционной системы. Классификация и характеристика операционных систем.
- •33. 73. Устойчивость линейных сар. Признаки устойчивости. Запасы устойчивости линейных сар.
- •34. Статистические методы распознавания. Метод Бейеса.
- •35. Определение оптимальных параметров настройки пид – регуляторов.
- •36. Реляционная алгебра Кодда
- •37. Устойчивость линейных непрерывных систем. Критерий устойчивости Найквиста.
- •38. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент.
- •Черный ящик
- •39. Определение, назначение и классификация компьютерных сетей. Базовые топологии локальных компьютерных сетей.
- •40. Назначение, классификация и характеристика запоминающих устройств эвм.
- •41. Критерий устойчивости а.М. Ляпунова для нелинейных систем.
- •42. Частотные методы идентификации динамических объектов.
- •43. Определение, назначение и классификация компьютерных сетей. Топология глобальной компьютерной сети.
- •44. Устройства ввода и вывода информации эвм.
- •45. Виды корректирующих средств в сар. Недостатки последовательной коррекции.
- •46. Классификация объектов управления по статическим и динамическим характеристикам.
- •47. Эталонная модель взаимодействия открытых систем osi. Характеристика уровней osi.
- •48. Основные типы регистров и их функции в эвм.
- •49. Гармоническая линеаризация. Физический смысл коэффициентов гармонической линеаризации.
- •50. Идентификация объектов по временным характеристикам. Определение кривой разгона объекта по его импульсной характеристике.
- •51. Программное обеспечение компьютерных сетей.
- •53. Устойчивость нелинейных систем. Метод л.С. Гольдфарба.
- •54. Идентификация динамических систем. Активные и пассивные методы идентификации.
- •55. Характеристика нормальных форм реляционной модели данных.
- •56. Интерфейсы в эвм. Типы и методы взаимодействия устройств вычислительной системы.
- •57. Точные методы исследования устойчивости и автоколебаний в нелинейных системах. Частотный метод в.М. Попова.
- •58. Методы аппроксимации кривых разгона объекта.
- •59. Пользовательские технологии Интернета.
- •60. Архитектура процессора эвм и назначение его функциональных блоков.
- •61. 65. Статические характеристики нелинейных элементов.
- •62. Обеспечивающие подсистемы информационно -управляющих систем и их характеристики.
- •63. Протоколы взаимодействия функциональных блоков компьютерной сети: понятие, виды, иерархия.
- •64. Система прерываний эвм. Механизм обработки прерываний в архитектуре эвм семейства intel.
- •66. 77. Промышленные регуляторы, их назначение и передаточные функции.
- •67. Функциональные подсистемы информационно- управляющих систем и их характеристики.
- •68. Основные принципы построения компьютерных сетей.
- •69. Классификация задач оптимального управления.
- •70. Организационные подсистемы информационно- управляющих систем и их характеристики.
- •71. Подходы к классификации моделей. Обоснование введения моделей. Классификация моделей по способу представления.
- •72. Организация системы ввода-вывода через bios
- •74. Принципы построения автоматизированных систем управления.
- •75. Классификация моделирования. Комбинация видов моделирования при исследовании сложных объектов. Имитационное и компьютерное моделирование.
- •76. Архитектура эвм и назначение основных блоков.
- •78. Состав интегрированной системы автоматизации предприятия.
- •79. Математическая модель и математическое моделирование. Этапы математического моделирования.
- •80. Логические основы проектирования цифровых устройств. Понятие функционально- полного набора логических элементов.
- •Процессы контроля и восстановления информации в эвм. Коды Хемминга: исправление одиночных ошибок, обнаружение двойных ошибок.
- •Виртуальная память и ее реализация. Сегментно-страничная организация памяти и динамическое преобразование адресов. Механизм замещения страниц.
- •Физический смысл коэффициентов гармонической линеаризации.
- •Математические ожидания сигналов на выходе стационарных сар.
- •Классификация систем автоматического регулирования.
- •Понятие и составляющие информационной системы (ис). Модели жизненного цикла ис. Классы задач, решаемые ис.
- •Система моделей предметной области. Функционально-ориентированная модель предметной области.
- •Объектная структура
- •Функциональная структура
- •Структура управления
- •Организационная структура
- •Техническая структура
- •Оперативная аналитическая обработка данных: концепции и технологии.
- •Принципы адресации компьютеров в компьютерной сети.
- •Контроллер прерываний от внешних устройств в архитектуре эвм семейства intel. Программно-аппаратное взаимодействие контроллера прерываний и микропроцессора.
53. Устойчивость нелинейных систем. Метод л.С. Гольдфарба.
Подадим на вход нелинейного звена (рис. 18.38, а) синусоидальные колебания
На выходе
нелинейного звена получим согласно
вынужденные колебания
.
Разложим в ряд Фурье и сохраним только
основную синусоиду (первую гармонику),
отбросив все высшие гармоники. Очевидно,
что это приближенное представление
вынужденных колебаний эквивалентно
гармонической линеаризации нелинейностей.
На основании этого для определения
первой гармоники вынужденных колебаний
величины y
можно
воспользоваться частотным аппаратом,
который применялся ранее для линейных
систем, следующим образом.
Приближенная
передаточная функция нелинейного звена
с уравнением
будет:
-
при наличии гистерезисной петли
-
при отсутствии гистерезисной петли
(однозначная нелинейность)
Приближенный комплексный коэффициент усиления, или приближенная АФХ нелинейного звена с уравнением будет:
(1)- при наличии
гистерезисной петли
-
при отсутствии гистерезисной петли
Эта приближенная АФХ определяет амплитуду и фазу первой гармоники на выходе нелинейного звена (если на его вход подается синусоида), а именно выражение (1) представить в виде:
,
где
-
фазовый сдвиг
а- амплитуда на входе нелинейного элемента;
В результате получим следующие вынужденные колебания на выходе нелинейного элемента (первая гармоника)
если
=0, то существуют автоколебания
-
обратная инверсия
Общая приближенная АФХ всей разомкнутой цепи с нелинейным звеном будет:
Незатухающие
синусоидальные колебания с постоянной
амплитудой в замкнутой системе
определяются согласно частотному
критерию устойчивости прохождением
АФХ разомкнутой системы через точку
(-1;j0),
т.е. W=-1.
Это и будет в данном случае условием
существования периодического решения
для замкнутой системы, которое принимается
приближенно синусоидальным. Итак имеем
условие
- условие автоколебания
П
ериодический
режим устойчив, если инверсная обратная
АФХ нелинейного элемента т.е.
по
росту амплитуды протыкает АФХ линейной
части изнутри наружу.
Эти характеристики определяют амплитуду и физический смысл второй гармоники, если на вход подано гармоническое колебание
Если на вход нелинейного элемента подан сигнал , то на выходе нелинейного элемента 1-ая гармоника может быть описана следующим гармоническим уравнением
Тогда в соответствии с
у
Для однозначной н/л:
54. Идентификация динамических систем. Активные и пассивные методы идентификации.
Адаптивные системы характеризуются возможностью оценивать не наблюдаемые переменные процессы, прогнозировать состояние процесса, при имеющихся или выбираемых управляющих и автоматически синтезировать оптимальность стратегии управления.
Все эти задачи решаются с применением математических моделей процесса. Поэтому создание ее в современной теории управления играет первостепенную роль. Под математической моделью здесь понимается оператор связи между функциями входных и выходных сигналов процесса. Задачи связанные с созданием математической модели целесообразно решать в 2 этапа:
На первом этапе на основе априорных сведений о физико-химических изменениях происходящих в процессе, составляется исходная модель. Обычно эта модель содержит неизвестные величины т.е. параметры, получение которых на основе априорных знаний слишком сложно или даже невозможно. Эта модель иногда содержит некоторые элементы структуры, целесообразность включения которых не является очевидной. Таким образом после первого этапа необходим второй. В ходе которого на основе наблюдения за входом и выходом переменного процесса определяются неизвестные параметры процесса и решается вопрос о выборе структуры модели.
В решении задачи второго этапа существенную роль играет эксперимент, а также наблюдение при этом за входными и выходными сигналами объекта. Путем обработки полученных наблюдений определяется структура модели и ее параметры. Этот второй этап и принято называть идентификацией.
При создании системы управления на этапе идентификации должны быть решены следующие вопросы:
Какой метод выбрать для идентификации.
Как выполнить сбор данных и как использовать эти полученные данные в промышленных условиях.
Как оценить качество полученного результата.
Как влияет точность полученного результата на качество оценивания ненаблюдаемых переменных объекта.
Активные и пассивные методы идентификации.
Задачей идентификации динамических систем в том числе и объектов регулирования заключается в оценке по результатам наблюдения за изменениями входных и выходных величин математических моделей технических систем.
Методы идентификации систем можно разделить на активные и пассивные. Использование активных методов предполагает постановку на действующей системе специальных экспериментов в определенной степени нарушающих нормальный режим работы системы.
Пассивные методы определяемые математическими моделями не требуют специально спланированных экспериментов. Модель системы ищется по результатам наблюдения за его естественными изменениями входных и выходных величин, то обстоятельство, что пассивные методы позволяют получить математическую модель без нарушения хода технологического процесса делают их крайне привлекательными, однако следует иметь в виду, что успешное применение пассивных методов идентификации по данным нормально функционирующей системы, возможно только при выполнении следующих условий:
Случайные помехи, искажающие реакцию на выбранное входное воздействие, должны быть независимыми от этого воздействия, в противном случае в составе погрешности оценки динамической характеристики помимо случайной составляющей, которая может быть сведена до допустимо малой величины с помощью методов математической статистики, будет также входить и неустранимая систематическая погрешность.
Входное воздействие по которому осуществляется идентификация должно обладать достаточно широким спектром, по крайней мере не меньшим, чем полоса частот в которой требуется оценить динамические характеристики системы.
Необходимо подчеркнуть, что вопреки распространенному мнению, необходимость применения активных методов обусловлена не только тем, что так проще, а объективно реально существующими ограничениями, которые могут сделать задачу идентификации пассивными методами принципиально не решаемой, каким бы ни был современный математический аппарат, обработки результатов наблюдения