
- •Вопросы на гэк 2012
- •1. Нелинейные сар. Понятия: «пространство состояний», «фазовая траектория», «фазовый портрет».
- •2. Проблема двойственности в линейном программировании.
- •3. Составляющие информационной системы (ис). Модели жизненного цикла ис.
- •4. Методы определения оптимальных параметров настройки промышленных регуляторов.
- •5. Автоколебания в сар. Определение параметров автоколебаний с помощью графических построений.
- •6. Математическая постановка задач оптимального управления. Пример: «Нажимное устройство реверсивного прокатного стана».
- •7. Субд. Функции субд. Транзакции. Свойства транзакций.
- •8.20. Оценка качества сар по временным характеристикам
- •9. Представление импульсного элемента при исследовании импульсных сар.
- •10. Синтез сар оптимальной по быстродействию.
- •11. Этапы канонического проектирования информационных систем.
- •12. Принципы системного подхода в моделировании. Сетевые модели.
- •13. Связь между спектрами сигналов на входе и выходе простейшего импульсного элемента. Теорема Котельникова.
- •14. Анализ методов решения задач оптимального управления.
- •15. Модели управления передачей, обработкой и хранением данных в информационных системах на основе технологии «клиент-сервер»
- •16. Непрерывно-стохастические модели на примере систем массового обслуживания.
- •17. Процессы конечной длительности в импульсных сар.
- •18. Метод динамического программирования.
- •19. Составляющие внемашинного информационного обеспечения систем управления. Системы классификации и кодирования информации.
- •21. Алгебраический аналог критерия устойчивости Гурвица для исар.
- •22. Системы управления на основе нечеткой логики.
- •23. Реляционная модель данных. Понятие функциональной зависимости. Процесс нормализации базы данных.
- •Целостность данных
- •Реляционная алгебра
- •Нормализация базы данных
- •Номер преподавателя Группа Сущность Преподаватель - группа
- •24. Синтез сар по логарифмическим характеристикам.
- •25. Метод гармонической линеаризации нелинейностей.
- •26. Системы управления на основе искусственных нейронных сетей.
- •27. Цифровые регуляторы и методы их настроек.
- •28. Аппроксимация кривых разгона методом площадей.
- •29. Характер движения в нелинейных и линейных сар.
- •30. Техническая диагностика. Математические основы технической диагностики.
- •31. Определение оптимальных параметров настройки пи – регуляторов.
- •32. 52. Назначение и функции операционной системы. Классификация и характеристика операционных систем.
- •33. 73. Устойчивость линейных сар. Признаки устойчивости. Запасы устойчивости линейных сар.
- •34. Статистические методы распознавания. Метод Бейеса.
- •35. Определение оптимальных параметров настройки пид – регуляторов.
- •36. Реляционная алгебра Кодда
- •37. Устойчивость линейных непрерывных систем. Критерий устойчивости Найквиста.
- •38. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент. Идентификация статических объектов. Планирование эксперимента. Полный факторный эксперимент.
- •Черный ящик
- •39. Определение, назначение и классификация компьютерных сетей. Базовые топологии локальных компьютерных сетей.
- •40. Назначение, классификация и характеристика запоминающих устройств эвм.
- •41. Критерий устойчивости а.М. Ляпунова для нелинейных систем.
- •42. Частотные методы идентификации динамических объектов.
- •43. Определение, назначение и классификация компьютерных сетей. Топология глобальной компьютерной сети.
- •44. Устройства ввода и вывода информации эвм.
- •45. Виды корректирующих средств в сар. Недостатки последовательной коррекции.
- •46. Классификация объектов управления по статическим и динамическим характеристикам.
- •47. Эталонная модель взаимодействия открытых систем osi. Характеристика уровней osi.
- •48. Основные типы регистров и их функции в эвм.
- •49. Гармоническая линеаризация. Физический смысл коэффициентов гармонической линеаризации.
- •50. Идентификация объектов по временным характеристикам. Определение кривой разгона объекта по его импульсной характеристике.
- •51. Программное обеспечение компьютерных сетей.
- •53. Устойчивость нелинейных систем. Метод л.С. Гольдфарба.
- •54. Идентификация динамических систем. Активные и пассивные методы идентификации.
- •55. Характеристика нормальных форм реляционной модели данных.
- •56. Интерфейсы в эвм. Типы и методы взаимодействия устройств вычислительной системы.
- •57. Точные методы исследования устойчивости и автоколебаний в нелинейных системах. Частотный метод в.М. Попова.
- •58. Методы аппроксимации кривых разгона объекта.
- •59. Пользовательские технологии Интернета.
- •60. Архитектура процессора эвм и назначение его функциональных блоков.
- •61. 65. Статические характеристики нелинейных элементов.
- •62. Обеспечивающие подсистемы информационно -управляющих систем и их характеристики.
- •63. Протоколы взаимодействия функциональных блоков компьютерной сети: понятие, виды, иерархия.
- •64. Система прерываний эвм. Механизм обработки прерываний в архитектуре эвм семейства intel.
- •66. 77. Промышленные регуляторы, их назначение и передаточные функции.
- •67. Функциональные подсистемы информационно- управляющих систем и их характеристики.
- •68. Основные принципы построения компьютерных сетей.
- •69. Классификация задач оптимального управления.
- •70. Организационные подсистемы информационно- управляющих систем и их характеристики.
- •71. Подходы к классификации моделей. Обоснование введения моделей. Классификация моделей по способу представления.
- •72. Организация системы ввода-вывода через bios
- •74. Принципы построения автоматизированных систем управления.
- •75. Классификация моделирования. Комбинация видов моделирования при исследовании сложных объектов. Имитационное и компьютерное моделирование.
- •76. Архитектура эвм и назначение основных блоков.
- •78. Состав интегрированной системы автоматизации предприятия.
- •79. Математическая модель и математическое моделирование. Этапы математического моделирования.
- •80. Логические основы проектирования цифровых устройств. Понятие функционально- полного набора логических элементов.
- •Процессы контроля и восстановления информации в эвм. Коды Хемминга: исправление одиночных ошибок, обнаружение двойных ошибок.
- •Виртуальная память и ее реализация. Сегментно-страничная организация памяти и динамическое преобразование адресов. Механизм замещения страниц.
- •Физический смысл коэффициентов гармонической линеаризации.
- •Математические ожидания сигналов на выходе стационарных сар.
- •Классификация систем автоматического регулирования.
- •Понятие и составляющие информационной системы (ис). Модели жизненного цикла ис. Классы задач, решаемые ис.
- •Система моделей предметной области. Функционально-ориентированная модель предметной области.
- •Объектная структура
- •Функциональная структура
- •Структура управления
- •Организационная структура
- •Техническая структура
- •Оперативная аналитическая обработка данных: концепции и технологии.
- •Принципы адресации компьютеров в компьютерной сети.
- •Контроллер прерываний от внешних устройств в архитектуре эвм семейства intel. Программно-аппаратное взаимодействие контроллера прерываний и микропроцессора.
28. Аппроксимация кривых разгона методом площадей.
В основе метода лежит предположение, что исследуемый объект регулирования может быть описан линейным дифференциальным уравнением с постоянными коэффициентами:
Где
- постоянные коэффициенты. Передаточная
функция объекта, описываемого уравнением
(2.18) может быть представлена как
(2.19) или в
размерной форме
(2.20)
Задача состоит в
том, чтобы определить неизвестные
коэффициенты
, используя для этого систему уравнений
(2.21). В Этой системе уравнений
и для всех значений
(2.21)
Входящие в данную
систему уравнений коэффициенты
вычисляются
по следующим формулам:
(2.22)
Эти коэффициенты
получили название «площадей». Для F1
– это действительно геометрическая
площадь (рис. 2.15), а для остальных
коэффициентов это название условно. В
формулах (2.22) введена новая переменная
.
В практике чаще всего встречаются следующие объекты:
1. Объекты с самовыравниванием без транспортного запаздывания;
2. Объекты без самовыравнивания и без транспортного запаздывания;
3. Объекты обоих видов, но с транспортным запаздыванием.
29. Характер движения в нелинейных и линейных сар.
НСАР называется такая система, которая содержит хотя бы одно звено, описываемое нелинейным уравнением.
Процессы в НСАР имеют целый ряд весьма существенных особенностей, которые не встречаются в линейных системах. Благодаря этим существенным особенностям даже вопрос об устойчивости системы становится здесь более сложным. Кроме структуры системы значений ее параметров для устойчивости того или иного установившегося процесса имеют значение здесь, в отличие от нелинейных систем, также и начальные условия. Возможен новый вид установившегося процесса – автоколебания, т.е. устойчивые собственные колебания с постоянной амплитудой при отсутствии внешних колебательных воздействий. Когда в системе возникают автоколебания, то установившееся состояние, соответствующее постоянному значению регулируемой величины, часто становится невозможным.
Следовательно, в общем случае на плоскости параметров системы могут быть не два вида областей (устойчивости и неустойчивости), как в линейных системах, а больше: 1) область устойчивости равновесного состояния с постоянным значением регулируемой величины; 2) область устойчивых автоколебаний; 3) область неустойчивости системы; 4) области, соответствующие другим, более сложным случаям (зоны застоя области с различной топологией фазовых траекторий, разделяемые сепаратрисами и т.д.).
Если процессы в системе имеют вид, указанный на рис. а), то равновесное состояние системы (х=0) неустойчиво. В том случае, когда оба указанных на рис .а) колебания в переменных процессах стремятся к одной и той же амплитуде и частоте, система будет обладать устойчивыми автоколебаниями с амплитудой «а».
На рис. б) показан случай, когда равновесное состояние (х=0) системы устойчиво «в малом», т.е. при начальных условиях, не выводящих отклонения в переходном процессе за определенную величину «а», и неустойчива «в большом», т.е. при начальных условиях, выводящих отклонения в переходном процессе за пределы величины «а». здесь граничным процессом является неустойчивый периодических процесс собственного движения системы с амплитудой «а» (переходные процессы расходятся от него в обе стороны).
На рис. в) показали случай трех возможных установившихся состояний: 1) равновесное состояние (х=0), 2) колебания с постоянной амплитудой а1, 3) колебания с постоянной амплитудой а2. При этом колебания с амплитудой а1 неустойчивы. В результате система будет устойчива «в малом» по отношению к равновесному состоянию х=0, а «в большом» система будет обладать устойчивыми автоколебаниями с амплитудой а2.