Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_GEK_2012_2.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
6.81 Mб
Скачать

27. Цифровые регуляторы и методы их настроек.

В настоящее время наблюдается тенденция вытеснения аналоговых сис-м управления цифровыми. Объясняется это широкими возможностями по реализации самых совершенных алгоритмов регулирования, что в свою очередь гарантирует получение высокой точности и хорошего быстродействия в замкнутой сис-ме непосредственного цифрового управления.

Цифровой рег-р состоит из АЦП, вычислит.устр-ва и ЦАП.

Схема

:

Рис.28

В АЦП осущ-ся преобразование непрерывного сигнала ошибки регулир-ия е(t) в числовую послед-ть Е[кТ]-квантование непрерывного сигнала во времени, а интервал следования чисел Т – период квантования. Также происходит округление значения непрерывного сигнала до ближайшей значащей цифры – квантование сигнала по уровню. Шаг квантования по уровню в современ. ВМ прим-ся для управления производствен.процессами и выбирается настолько малым, что и внормальных режимах работы сис-мы регулирования можно пренебречь.

В вычислит.устр-ве – вычисление текущего значения регулирующего воздействия для каждого шага – преобразование по некоторому з-ну последов-ти чисел ошибки регулир-ия Е[кТ] в послед-ть чисел мю[кТ], к-ая определяет текущее значение регулирующего воздействия.

ЦАП осущ-ет преобразование числовой послед-ти мю[кТ] в непрерывные перемещения регулирующего органа мю(t).

Преобразование воздействий дискретными динамич. сис-ми описыв-ся разностными уравнениями, а не диф.ур-ями.

Линейные разностные ур-ия с постоян.коэф-тами имеют вид:

An*y[(k-n)T]+….+A1*y[(k-1)T]+A0*y(kT)=Bm*x[(k-m)T]+…+B1*x[(k-1)T]+B0*x(kT)

Ai,Bi – постоян.коэф-ты 

Методика расчета настроек цифрового регулятора по номограммам

С целью упрощения процедуры настройки цифрового ПИД  регулятора рекомендуется согласно Зигрера-Николса выбрать  следующие значения отношений.

Тк/Ти=0,2   Тd/Tk=1.25   при Тк=0,1Ткр;

В этом случае коэффициенты d0=2.45; d1=-3.5; d2=1.45

Таким образом в алгоритме настраиваемых параметров  остается один коэффициент усиления Кр, чем объясняется  простота и распространенность этого метода настроек.

Для цифрового ПИ закона регулирования Тd=0, тогда d0=1,2; 

d1=-1; d2=0

После определения периода квантования Тк единственным  настраиваем параметрам настраивания параметра является  коэффициент усиления цифрового регулятора Кр.Его достаточно просто настроить экспериментально так чтобы  декремент затухания в системе был равен 1/4. Однако при 

известных параметрах объекта управления Кр возможно  определить с помощью номограмм, полученных минимизацией  критерием по величине Кр.

Методика расчета настроек цифрового регулятора по формулам.

Данный метод предполагает, что переход характера объекта управления, аппроксимированная звеном 1-го порядка с запаздыванием. При этом целью исключения(уменьшения) бросков управляющего сигнала при ступенчатом изменение сигнала задания использования несколько другая форма записи дискретного ПИД -закона регулирования.

u(k)=u(k-1)+Kp[y(k-1)-y(k)+d1[y3-y(k)]+d2(2y(k-1)-y(k-2)-y(k))]

Выбрав период квантования Тк, рассчитывают параметры настройки ПИ или ПИД регулятора по формулам:

Для ПИ:  Кр**=(0,9*T)/(тау+Tk/2)-[(0.135*Т*Тк)/((тау+Tk/2)^2)];

d1=(0.27*Т*Тк)/(Kp**(тау+Tk/2)^2);

d2=0 Kp=Kp**/K

Для ПИД:

Кр**=(1,2*T)/(тау+Tk)-[(0.3*Т*Тк)/((тау+Tk/2)^2)];

d1=(0.6*Т*Тк)/(Kp**(тау+Tk/2)^2);

d2=0,5Т/Кр**Тк    Kp=Kp**/K

В этих формулах учтено запаздывание Tk/2 на величину свойственное всем замкнутым цифровым системам регулирования.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]