Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дискретка.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
949.76 Кб
Скачать

Выборки элементов с повторениями

В данных выборках допускается повторение элементов, что является достаточно естественным (например, в телефонных и автомобильных номерах возможно использование одной цифры несколько раз).

Число размещений из элементов по с повторениями обозначается и находится как

Число перестановок , в которых 1-й элемент повторяется раз, 2-й - раз, а -й - раз, находится следующим образом:

Пример 9. Сколько "слов" можно получить, переставляя буквы в слове МАТЕМАТИКА?

Решение. Заметим, что если бы все буквы были различны, то получили бы новых "слов", но буква "М" употребляется в "слове" 2 раза, "А" - 3 раза, "Т" - 2 раза, оставшиеся три буквы - по разу. Следовательно, искомое число будет в раз меньше, чем , и равно

Число сочетаний с повторениями из элементов по выражается через число сочетаний без повторений:

Пример 10. В кафе в продаже имеются 5 сортов пирожных. Сколькими способами 8 студенток могут заказать себе по одному пирожному?

Решение. Зашифруем каждую покупку 8 пирожных единицами по 5 сортам, разделяя сорта нулями. Тогда каждой покупке будет соответствовать упорядоченный набор из 8 единиц и 4 (= 5 - 1) разделительных нулей, а общее число покупок будет соответствовать числу перестановок этих нулей и единиц . Таким образом,

Вопрос 8

Метод решения комбинаторных задач.Метод подсчета числа элементов в объединении множеств по формуле включений и исключений, состоящий в поочередном сложении и вычитании, называется методом включения и исключения.

Формула включений-исключений — комбинаторная формула, позволяющая определить мощность объединения конечного числа конечных множеств, которые в общем случае могут пересекаться друг с другом.

Случай двух множеств

Например, в случае двух множеств формула включений-исключений имеет вид:

В сумме элементы пересечения учтены дважды, и чтобы компенсировать это мы вычитаем из правой части формулы. Справедливость этого рассуждения видна из диаграммы Эйлера-Венна для двух множеств, приведенной на рисунке справа.

Таким же образом и в случае множеств процесс нахождения количества элементов объединения состоит во включении всего, затем исключении лишнего, затем включении ошибочно исключенного и так далее, то есть в попеременном включении и исключении. Отсюда и происходит название формулы.

Впервые формулу включений-исключений опубликовал португальский математик Даниэль да Сильва  в 1854 году . Но еще в 1713 году Николай Бернулли  использовал этот метод для решения задачи Монмора , известной как задача о встречах, частным случаем которой является задача о беспорядках. Также формулу включений-исключений связывают с именами французского математика Абрахама де Муавра и английского математика Джозефа Сильвестра . В теории вероятностей аналог принципа включений-исключений известен как формула Пуанкаре.

Вопрос 13

В математике биномиальные коэффициенты — это коэффициенты в разложении бинома Ньютона по степеням x. Коэффициент при обозначается или и читается «биномиальный коэффициент из n по k» (или «це из n по k»):

В комбинаторике биномиальный коэффициент интерпретируется как количество сочетаний из n по k, то есть количество всех подмножеств (выборок) размера k в n-элементном множестве.

Биномиальные коэффициенты часто возникают в задачах комбинаторики и теории вероятностей. Обобщением биномиальных коэффициентов являются мультиномиальные коэффициенты.

В комбинаторике биномиальный коэффициент означает, число всех возможных вариантов выборки k элементов из множества элементов n.

Пример:

Из множества n {1,2,3,4}, выбираем все возможные комбинации из двух элементов, k=2

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

Получается шесть возможных вариантов.

Подставив значения в формулу, проверим полученный результат:

Сочетания

1.1 Числа Сkn

Пусть X - множество, состоящее из n элементов. Любое подмножество Y множества X, содержащее k элементов, называется сочетанием k элементов из n; при этом, разумеется, k ? n.

Число различных сочетаний k элементов из n обозначается Сnk . Одной из важнейших формул комбинаторики является следующая формула для числа Сnk :

Её можно записать после очевидных сокращений следующим образом:

В частности,

Это вполне согласуется с тем, что в множестве X имеется только одно подмножество из 0 элементов - пустое подмножество.

Приведём доказательство формулы (2). Пусть Y - какое-либо подмножество множества X , содержащее k элементов. Составив всевозможные перестановки из этих элементов, получим k! различных строк длинной k. Если указанную операцию проделать с каждым подмножеством Y, содержащим k элементов, то получим всего Cnk · k! различных строк длинной k . Но очевидно, что таким путём должны получиться все без исключения строки длиной k без повторений, которые можно составить из элементов множества X. поскольку число таких строк равно Ank , то имеем соотношение Cnk · k! = An , из которого следует Cnk =Akn, т.е. формула (2).

1.2 Свойства

Числа Cnk обладают рядом замечательных свойств. Эти свойства в конечном счёте выражают различные соотношения между подмножествами данного множества X. Их можно доказывать непосредственно, исходя из формулы (1), но более содержательными являются доказательства, опирающиеся на теоретико-множественные рассуждения.

1. Справедлива формула

Сnk = Сn-kn , (3)

Вытекающая из (1) очевидным образом. Смысл формулы (3) состоит в том, что имеется взаимно-однозначное соответствие между множеством всех k-членных подмножеств из X и множеством всех (n - k)-членных подмножеств из X: чтобы установить это соответствие, достаточно каждому k-членному подмножеству Y сопоставить его дополнение в множестве X.

2. Справедлива формула

С0n + С1n + С2n + … + Сnn = 2n . (4)

Поскольку сумма, стоящая в левой части, выражает собой число всех подмножеств множества X (C0n есть число 0-членных подмножеств, C1n - число 1-членных подмножеств и т.д.), то для доказательства формулы (4) достаточно сослаться на уже известный читателю факт: число различных подмножеств n-членного множества X равно 2n.

3. При любом k, 1? k? n , справедливо равенство

Ckn = Cn-1k + Cn-1k-1. (5)

Это равенство нетрудно получить с помощью формулы (1). В самом деле,

Вывод формулы (5), основанный на теоретико-множественных соображениях. Укажем, что для этого следует выделить какой-то определённый элемент а є X и все k-членные подмножества разбить на две группы: подмножества, содержащие а , и подмножества, не содержащие а.