
- •1.Исторический обзор развития термодинамики
- •2. Термодинамическая система.
- •3. Типы термодинамического контакта
- •Термодинамические параметры
- •Термодинамическое состояние
- •Равновесное состояние
- •Уравнения состояния
- •Термодинамические процессы
- •10. Теплота и количество теплоты.
- •11. Внутренняя энергия. Энтальпия.
- •12. Аналитическое выражение первого начала.
- •13. Теплоемкость.
- •14. Изотермический процесс.
- •15. Изобарический процесс.
- •16. Изохорический процесс.
- •17. Адиабатический процесс.
- •18. Политропический процесс.
- •28) Аналитическое выражение второго начала.
- •29) Максимально полезная внешняя работа.
- •31) Свободная энергия Гельмгольца
- •32) Свободная энергия Гиббса.
- •34) Дифференциальные уравнения термодинамики в частных производных.
- •35) Условия равновесия фаз.
- •36) Правило фаз.
- •37.Теплота фазового перехода.
- •38 .Испарение и конденсация
- •39.Критическая точка
- •40. Насыщенный пар
- •41. Влажный пар
- •42. Перегретый пар
- •43. Циклы паросиловых установок
- •44. Циклы газотурбинных установок и реактивных двигателей
- •55. Размерные величины и единицы измерения
- •56. Теория размерностей
- •57. Уравнение теплопроводности
- •58. Одномерная стационарная задача теплопроводности при отсутствии внутреннего тепловыделения
- •59. Влияние переменности коэффициента теплопроводности
- •61. Перенос тепла в ребрах
- •62. Многомерные стационарные задачи теплопроводности
- •63. Нестационарная теплопроводность при пренебрежимо малом внутреннем термическом сопротивлении
- •64.Нестационарная теплопроводность в полу бесконечном твердом теле.
- •65.Диаграммы для решения задач нестационарной теплопроводности
- •66.Численные решения задач нестационарной теплопроводности
- •67. Уравнения сохранении массы, количества движения и энергии при ламинарном обтекании плоской пластины
- •68. Интегральные уравнения количества движения и энергии для ламинарного пограничного слоя
- •69. Расчет коэффициентов теплоотдачи и трения в ламинарном потоке
- •70.Аналогия между теплообменом и переносом количества движения при турбулентном обтекании плоской пластины
- •71.Аналогия Рейнольдса при турбулентном обтекании плоской пластины
- •72 Вынужденная конвекция при ламинарном течений в трубе
- •73 Безразмерные комплексы, используемые для обобщения экспериментальных данных по конвективному теплообмену
- •74 Конвективный теплообмен при течении в трубах и каналах
- •76 Свободная конвекция
- •77 Смешанная свободная и вынужденная конвекция
- •78 Теплообмен в высокоскоростном потоке
- •79 Физика излучения
- •80 Радиационные свойства
- •81 Угловой коэффициент излучения
- •82. Теплообмен излучением между серыми поверхностями
- •83. Матричный метод
- •84.Перенос излучения в поглощающих пропускающих средах
- •85. Радиационные свойства газов
- •86 Солнечное излучение
- •87 Основные типы теплообменников
- •88.Суммарный коэффициент теплопередачи
- •89. Среднелогарифмическая разность температур
- •90. Эффективность теплообменника
44. Циклы газотурбинных установок и реактивных двигателей
Реактивный двигатель представляет собой устройство, в котором химическая энергия топлива преобразуется в кинетическую энергию струи рабочего вещества (газа), расширяющегося в соплах. Эта струя создает тягу за счет реактивного действия рабочего тела, вытекающего из двигателя в сторону, противоположную на-правлению движения летательного аппарата.
Реактивные двигатели подразделяются на две основные категории — ракетные двигатели и воздушно-реактивные двигатели (ВРД).
Ракета несет на борту запас как горючего, так и окислителя, необ-ходимого для сгорания топлива (жидкий кислород, озон, перекись водорода, азотная кислота и др.). В отличие от них воздушно-реактивные двигатели несут на борту только запас горючего, а в качестве окислителя используется кислород атмосферного воздуха. Следовательно, ВРД пригодны для работы только в атмосфере Земли, тогда как ракетные двигатели могут работать как в атмосфере, так и в космическом пространстве.
Одним из основных недостатков, присущих поршневым двигателям внутреннего сгорания, является неизбежная неравномерность работы двигателя во времени — в течение цикла температуры и давления в цилиндре резко меняются; для преобразования возвратно-поступательного движения поршня во вращательное неизбежно применение кривошипно-шатунного механизма. Средняя скорость рабочего тела относительно двигателя невелика. Все эти обстоятельства не позволяют при создании двигателей внутреннего сгорания сосредоточить большую мощность в одном агрегате.
От этих недостатков свободен двигатель внутреннего сгорания дру-гого типа — газотурбинная установка. Цикл газотурбинной установки состоит из тех же процессов, что и цикл поршневого двигателя внутреннего сгорания, но существеннейшее различие заключается в следующем: если в поршневом двигателе эти процессы происходят последовательно, один за другим, в одном и том же элементе двигателя — цилиндре, то в газотурбинной установке эти процессы происходят в различных элементах этой установки и, таким образом, в ней нет такой неравномерности условий работы элементов двигателя, как в поршневом двигателе. В газотурбинных установках средняя скорость рабочего тела в 50— 100 раз выше, чем в поршневых двигателях. Все это позволяет сосредоточить в малогабаритных газотурбинных установках большие мощности. Термический КПД газотурбинных установок высок. Эти важные преимущества делают газотурбинную установку весьма перспективным двигателем. Пока еще ограниченное применение газовых турбин в высокоэкономичных крупных энергетических установках объясняется в основном тем, что из-за недостаточной жаропрочности современных конструк-ционных материалов такая турбина может надежно работать в области температур, меньших области температур в двигателях внутреннего сгорания поршневого типа (ибо в поршневых двигателях температура рабочего тела меняется во времени и, следовательно, тепловой режим работы поршня, стенок цилиндра и других узлов является не очень напряженным, тогда как в газотурбинной установке многие конструкционные элементы работают в условиях постоянного воздействия высоких температур); это обстоятельство приводит к снижению термического КПД установки. Дальнейший прогресс в создании новых жаропрочных материалов позволит газовой турбине работать в области более высоких температур.