
- •Эконометрика, её задача и метод
- •Линейная модель множественной регрессии.
- •Этапы построения эконометрических моделей. Этапы решения экономико-математических задач
- •Принципы спецификации эконометрических моделей.
- •Отражение в модели влияния неучтённых факторов. Б.42-44
- •Типы переменных в эконометрических моделях
- •Структурная и приведённая формы спецификации эконометрических моделей. Б. 45, Елисеева
- •Отражение в эконометрических моделях фактора времени.
- •Свойства временных рядов
- •Регрессионные модели с фиктивными переменными.
- •16) Статистические свойства оценок параметров парной регрессионной модели
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений. (было в лекции)
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Статистические свойства оценок параметров парной регрессионной модели
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Интервальная оценка индивидуального значения зависимой переменной в парной регрессионной модели
- •К оличественные характеристики взаимосвязи пары случайных переменных Корреляция, ковариация, индекс детерминации и стат. Фишера.
- •Фиктивная переменная наклона: назначение; спецификация регрессионной модели с фиктивной переменной наклона; значение параметра при фиктивной переменной
- •Дифференциальный закон распределения как характеристика случайной переменной (я так поняла, что это нормальный закон распределения непрерывной св)
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам. Через Поиск решения к.76
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса. Оценка коэффициентов модели Самуэльсона-Хикса
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов Делить большие остатки
- •Составление спецификации модели временного ряда (Ахтунг! сдуто из книги Катаргина частично)
- •29) Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных
- •Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений
- •Дополнение к вопросу 26 Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Настройка модели с системой одновременных уравнений
- •Структура экономических задач. Математическая модель объекта
- •Что такое Метод наибольшего правдоподобия
- •Что такое стационарный процесс
- •37) Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений Текст в почте
- •3 8. Оценивание линейной модели множественной регрессии в Excel
- •3 9. Алгоритм проверки адекватности парной регрессионной модели.
- •41. Автокорреляция случайного возмущения. Причины. Последствия
- •43) Коэффициент детерминации в регрессионной модели
Статистические свойства оценок параметров парной регрессионной модели
Исходя из теоремы Гаусса-Маркова, МНК-оценки параметров парной регрессии
обладают следующими свойствами:
Линейность – то есть она является линейным функционалом
Нормальность – то есть её распределение нормально
Несмещенность – то есть её математическое ожидание равно значению параметра
Состоятельность – то есть она сходится по вероятности к истинному значению параметра
Эффективность – то есть мера эффективности одной оценки не больше для любой другой оценки из того же класса
Ковариация, коэффициент корреляции и индекс детерминации
Интервальная оценка индивидуального значения зависимой переменной в парной регрессионной модели
Одной из основных задач эконометрического анализа является прогнозирование значений зависимой переменной при определенных значениях Хпр объясненной переменной.
Предположим, что мы построили некое эмпирическое значение парной регрессии ỹi=b0+b1xi, на основе кот-го хотим предсказать среднюю величину зависимой переменной у при х=хпр. В данном случае рассчитанное по уравнению величина ỹпр=b0+b1xпр является только оценкой для искомого матожидания.
Встает вопрос насколько эта оценка отклоняется от среднего матожидания для того, чтобы ей можно было доверять с надежностью γ=1-α.
Чтобы построить доверит интервал, покажем, что случайная величина ỹпр имеет норм распределение с некоторыми конкретными переменными.
Мы знаем, что ỹпр=b0+b1xпр. Подставим в это уравнение значение для bo и b1, найденное в виде лин комбинаций выборочных величин объясняющей переменной yi.
К оличественные характеристики взаимосвязи пары случайных переменных Корреляция, ковариация, индекс детерминации и стат. Фишера.
Математическое ожидание (среднее значение), дисперсия и среднее квадратич.отклонение, ковариация и коэф-нт корреляции.
Матем. ожид. дискретн.
случ. перем. назыв. вел-на:M(x)=сумма(Pi*xi),где M(x)-матем ожид. СДП х, Pi-вероятность появл. в опытах знач-я хi,n-кол-во допустимых значений ДСВеличины. Матем. ожид-средневзвеш. значение ДСП,где в качестве веса использ значение вероятности.
Дисперсией дискретн случ перемен назыв. в-на:D2(x)=сумма(xi-M(x))2*P(xi), где D2(x)-дисперсия случ.перем.х. Дисперсия случ. вел-ны выступает в качестве характеристики разброса возможных ее значений. Положит. корень из дисперсии назыв средним квадратич.отклонением или стандартным отклонением,или стандартной ошибкой.
Матем.ожидание непрерывн.случ.перемен Хс законом распределения рх(t) назыв. в-на:М(х)=интеграл от – бесконечности до + бесконечности tpx(t)dt, что назыв. перв начальн.моментом ф-ции px(t).Через рез-ты наблюдений матем.ожид-е вычисл.:M(x)=(1/n)сумма(xi).
Дисперсией непрерывн.случ. перемен. Х с функцией плотности вероятности px(t) назыв. выраж-е: D2(x)= интеграл от – бесконечности до + бесконечности(t-M(x))2px(t)dt,что назыв вторым центр моментом ф-ции px(t).В общем случае дисперсия случ.перем.: D2(x)=М(х-М(х))2=М(х2)-М2(х).
Ковариацией 2 случ.перем. ХиУ:COV(x,y)=M((x-M(x))(y-M(y))).Значение ковариации отраж.наличие связи между 2 случ.перем.Если COV(x,y)>0,связь между XиY положит.,если <0-отрицат., если=0,X и Y-независ.перемен.Область возможн.знач. ковариации-вся числовая ось.
Недостаток: ее знач. зависит от масштаба измерения перемен и наличия размерности. Недостатки устраняются путем деления знач ковариации на знач стандартн отклонений перемен,что назыв коэф-нтом корреляции.это безразмерн вел-на,предел от -1 до 1 включительно.Ф-ла:р(х,у)=COV(x,y)/(D(x)*D(y)).
Св-ва колич.характеристик:
1)мат.ожидание:M( c)=c, M(c1x+c2y)=c1M(x)+c2M(y);
2)дисперсия:дисп. const=0;D2(cx)=c2D2(x);D2(c1x+c2y)= c2D2(x)+ c2D2(y)+2 c1 c2COV(x,y);
3)ковариация:COV(x,y)=COV(y,x);Cov(c1x1+c2x2)= c1 c2Cov(x1, x2); Cov(cx)=0;Cov(x+ c1y)=Cov(x,y);Cov(x,x)=D2(x)