- •Эконометрика, её задача и метод
- •Линейная модель множественной регрессии.
- •Этапы построения эконометрических моделей. Этапы решения экономико-математических задач
- •Принципы спецификации эконометрических моделей.
- •Отражение в модели влияния неучтённых факторов. Б.42-44
- •Типы переменных в эконометрических моделях
- •Структурная и приведённая формы спецификации эконометрических моделей. Б. 45, Елисеева
- •Отражение в эконометрических моделях фактора времени.
- •Свойства временных рядов
- •Регрессионные модели с фиктивными переменными.
- •16) Статистические свойства оценок параметров парной регрессионной модели
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений. (было в лекции)
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Статистические свойства оценок параметров парной регрессионной модели
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Интервальная оценка индивидуального значения зависимой переменной в парной регрессионной модели
- •К оличественные характеристики взаимосвязи пары случайных переменных Корреляция, ковариация, индекс детерминации и стат. Фишера.
- •Фиктивная переменная наклона: назначение; спецификация регрессионной модели с фиктивной переменной наклона; значение параметра при фиктивной переменной
- •Дифференциальный закон распределения как характеристика случайной переменной (я так поняла, что это нормальный закон распределения непрерывной св)
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам. Через Поиск решения к.76
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса. Оценка коэффициентов модели Самуэльсона-Хикса
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов Делить большие остатки
- •Составление спецификации модели временного ряда (Ахтунг! сдуто из книги Катаргина частично)
- •29) Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных
- •Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений
- •Дополнение к вопросу 26 Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Настройка модели с системой одновременных уравнений
- •Структура экономических задач. Математическая модель объекта
- •Что такое Метод наибольшего правдоподобия
- •Что такое стационарный процесс
- •37) Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений Текст в почте
- •3 8. Оценивание линейной модели множественной регрессии в Excel
- •3 9. Алгоритм проверки адекватности парной регрессионной модели.
- •41. Автокорреляция случайного возмущения. Причины. Последствия
- •43) Коэффициент детерминации в регрессионной модели
Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений. (было в лекции)
Один из принципов спецификации - включение в спецификацию экономической модели случайных возмущений. На практике не всегда удается учесть влияние всех факторов на изучаемую переменную (например, в функции спроса учесть возрастные особенности потребителя), выбрать правильную форму математической зависимости между экономическими переменными (например, нелинейную вместо линейной), безошибочно выполнить измерения (правильно провести опрос). Поэтому эндогенные переменные модели следует рассматривать как случайные величины и, помимо детерминированной составляющей, описывающей поведение эндогенной переменной в зависимости от предопределенных переменных, включать некоторые случайные величины, называемые случайные возмущения. Y = f(x)+Ɛ , где f(x)- часть эндогенной переменной, объясняемая значением экзогенной переменной Х; ε – случайное возмущение. Для того чтобы среди множества уравнений регрессии выбрать одно, необходим критерий отбора. При оценивании параметров регрессионных моделей наиболее часто применяется МНК. Его оценки обладают свойствами несмещённости, состоятельности, эффективности:
То есть оценки параметров должны быть подобраны таким образом, чтобы сумма
квадратов случайных возмущений стремилась к минимуму
(2)
Для нахождения минимума дифференцируем (1):
Получаем стандартную форму нормальных уравнений:
Из которых находим параметры.(см пред пункт там яснее)
Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
Множественная регрессия позволяет построить и проверить модель линейной связи между зависимой (эндогенной) и несколькими независимыми (экзогенными) переменными: y = f(x1,...,xр), где у - зависимая переменная (результативный признак); х1,...,хр - независимые переменные (факторы).
Множественная линейная регрессионная модель имеет вид:
y=a+b1x1+b2x2+…+bpxp+ε
Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:
1. быть количественно измеримы. При включении качественного фактора нужно придать ему количественную определенность
2. не должны быть коррелированы между собой и тем более и годиться в точной функциональной связи.
Включение в модель факторов с высокой интеркорреляцией, когда ryx1 < rx1x2 может повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии.
Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель, и параметры уравнения регрессии оказываются неинтерпретируемыми.
Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по t-критерию Стьюдента.
Поскольку одним из условий построения уравнения множественной регрессии является независимость действия факторов, коллинеарность факторов нарушает это условие. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.
Включение в модель мультиколлинеарных факторов нежелательно по следующим причинам:
- затрудняется интерпретация параметров множественной регрессии; параметры линейной регрессии теряют экономический смысл;
- оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений, что делает модель непригодной для анализа и прогнозирования оценки параметров ненадежны, обнаруживают большие стандартные ошибки и меняются с изменением объема наблюдений, что делает модель непригодной для анализа и прогнозирования
Признаки мультиколлинеарности.
1.В модели с двумя переменными одним из признаков мультиколлинеарности является близкое к единице значение коэффициента парной корреляции. Если значение хотя бы одного из коэффициентов парной корреляции больше, чем 0,75, то мультиколлинеарность представляет собой серьезную проблему. Однако высокое значение коэффициентов парной корреляции является достаточным, но не необходимым условием наличия мультиколлинеарности.
2. В модели с числом независимых переменных больше двух, парный коэффициент корреляции может принимать небольшое значение даже в случае наличия мультиколлинеарности. В этом случае лучше рассматривать частные коэффициенты корреляции.
3. Для проверки мультиколлинеарности можно рассмотреть детерминант матрицы коэффициентов парной корреляции |r|. Этот детерминант называется детерминантом корреляции |r| ∈(0; 1). Если |r| = 0, то существует полная мультиколлинеарность. Если|r|=1, то мультиколлинеарность отсутствует. Чем ближе |r| к нулю, тем более вероятно наличие мультиколлинеарности.
4. Если оценки имеют большие стандартные ошибки, невысокую значимость, но модель в целом значима (имеет высокий коэффициент детерминации), то это свидетельствует о наличие мультиколлинеарности.
5. Если введение в модель новой независимой переменной приводит к существенному изменению оценок параметров и небольшому изменению коэффициента детерминации, то новая переменная находится в линейной зависимости от остальных переменных.
