Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры эконометрика.docx
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
3.79 Mб
Скачать
  1. Свойства временных рядов

Временной ряд – это датированная целочисленными моментами времени t экономическая переменная уt. Эта переменная служит количественной характеристикой некоторого экономического объекта, поэтому изменение этой переменной во времени определяется факторами, оказывающими воздействие на данный объект с ходом времени. Все факторы делятся на 3 класса.

1 класс: факторы («вековые» воздействия), результирующее влияние которых на данный объект на протяжении длительного отрезка времени не изменяют своего направления. Они порождают монотонную составляющую (тенденцию или тренд).

2 класс: факторы (циклические воздействия), результирующее влияние которых на объект совершает законченный круг в течение некоторого фиксированного промежутка времени T.

3 класс: факторы (случайные воздействия), результирующее влияние которых на объект с высокой скоростью меняет направление и интенсивность.

3 Класс факторов позволяют интерпретировать величину в каждый период времени как случайную переменную. Закон распределения этой переменной Pyt(q) зависит от переменной времени t , т.е. Pyt(q)= Pyt(q;t). Следовательно, от переменной времени t зависят и основные количественные характеристики временного ряда yt: E(yt)=my(t) D(yt)=σ2y (t)..

  1. Регрессионные модели с фиктивными переменными.

Фиктивной переменной называется атрибутивный или качественный фактор, представленный посредством определённого цифрового кода.

Наиболее наглядным примером применения фиктивных переменных является модель регрессии, отражающая проблему разрыва в заработной плате у мужчин и женщин.

Предположим, что на основе собранных данных была построена модель регрессии, отражающая зависимость заработной платы рабочих y от их возраста х: yt=β0+β1xt.

Однако данная модель регрессии не может в полной мере охарактеризовать вариацию результативной переменной. Поэтому в модель необходимо ввести дополнительный фактор, например пол, на основании предположения о том, что у мужчин в среднем заработная плата выше, чем у женщин. В связи с тем, что переменная пола является качественной, её необходимо представить в виде фиктивной переменной следующим образом:

С учётом новой фиктивной переменной модель регрессии примет вид: y=β0+β1x+β2D, где β2 – это коэффициент, который характеризует в среднем разницу в заработной плате у мужчин и женщин. Моделью регрессии с переменной структурой называется модель регрессии, которая включает в качестве факторной переменной фиктивную переменную. Рассмотрим модель регрессии, характеризующую зависимость переменной размера заработной платы у от переменной стажа работников х с различным образованием. Качественная переменная «образование» может принимать три значения: среднее, среднее специальное и высшее. Для включения факторной переменной «образование» в модель регрессии, необходимо ввести две новых фиктивных переменных, потому что их количество должно быть на единицу меньше, чем значений качественной переменной. Следовательно, качественная переменная «образование» может быть представлена в виде:

Модель регрессии, характеризующая зависимость переменной размера заработной платы у от переменной стажа работников х с различным образованием, примет вид: y=β0+β1x+β2D1+ β3D2.

Моделью регрессии без ограничений называется модель регрессии, в которую включены все фиктивные переменные.

Базисной моделью или регрессией с ограничениями называется модель регрессии, в которой все значения фиктивных переменных равны нулю.

Оценки неизвестных коэффициентов моделей регрессии с переменной структурой рассчитываются с помощью классического метода наименьших квадратов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]