Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры эконометрика.docx
Скачиваний:
3
Добавлен:
01.04.2025
Размер:
3.79 Mб
Скачать

41. Автокорреляция случайного возмущения. Причины. Последствия

Автокорреляция случайных возмущений означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии.

В классической регрессионной модели выполнение третьего условия Гаусса-Маркова (Соv(εt εS) = 0,при t ≠ s) гарантирует некоррелированность значений случайных членов в раз­личные моменты наблюдений и это позволяет получить несмещенные МНК-оценки с минимальной дисперсией. Зависимость значений случайных членов в различные моменты времени на­зывается автокорреляцией (сериальной корреляцией).

Формальной причиной автокорреляции в регрессионных моделях является нарушение третьего условия теоремы Гаусса-Маркова, действительной же причиной может быть: неправильная спецификация переменных (пропуск важной объясняющей переменной); наличие неучтенных факторов; использование ошибочной функциональной зависимости, а иногда и характер наблюдений (например, временные ряды).

Для проверки на автокорреляцию используется ряд крите­риев, из которых наиболее широкое применение получил крите­рий Дарбина-Уотсона

Последствия автокорреляции в определенной степени сходны с последствиями гетероскедастичности. Среди них при применении МНК обычно выделяются следующие:

  1. Оценки параметров, оставаясь линейными и несмещенными, перестают быть эффективными. Следовательно, они перестают обладать свойствами наилучших линейных несмещенных оценок

  2. Дисперсии оценок являются смещенными. Зачастую дисперсии, вычисляемые по стандартным формулам, являются заниженными, что приводит к увеличению t-статистик. Это может привести к признанию статистически значимыми объясняющие переменные, которые в действительности таковыми могут и не являться.

  3. Оценка дисперсии регрессии является смещенной оценкой истинного значения , во многих случаях занижая его.

  4. В силу вышесказанного выводы по t- и F-статистикам, определяющим значимость коэффициентов регрессии и коэффициента детерминации, возможно, будут неверными. Вследствие этого ухудшаются прогнозные качества модели.

43) Коэффициент детерминации в регрессионной модели

В ведем обозначения

TSS – общая сумма квадратов эндогенной переменной (Total sum of squares )

RSS – регрессионная сумма квадратов (Regression sum of squares)

ESS – сумма квадратов остатков (ошибок) (Error sum of squares)

TSS = RSS + ESS

В качестве показателя степени влияния выбранного регрессора на поведение эндогенной переменной принимается отношение:

R2 – называется коэффициентом детерминации

Он характеризует долю результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:

0≤ R2≤1. причем если R2= 1 то переменная yt полностью объясняется регрессором xt.

В множественной регрессионной модели добавление дополнительных регрессоров увеличивает значение коэффициента детерминации, поэтому его корректируют с учетом числа независимых переменных:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]