- •Эконометрика, её задача и метод
- •Линейная модель множественной регрессии.
- •Этапы построения эконометрических моделей. Этапы решения экономико-математических задач
- •Принципы спецификации эконометрических моделей.
- •Отражение в модели влияния неучтённых факторов. Б.42-44
- •Типы переменных в эконометрических моделях
- •Структурная и приведённая формы спецификации эконометрических моделей. Б. 45, Елисеева
- •Отражение в эконометрических моделях фактора времени.
- •Свойства временных рядов
- •Регрессионные модели с фиктивными переменными.
- •16) Статистические свойства оценок параметров парной регрессионной модели
- •Ожидаемое значение случайной переменной, её дисперсия и среднее квадратическое отклонение.
- •Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений. (было в лекции)
- •Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности
- •Статистические свойства оценок параметров парной регрессионной модели
- •Ковариация, коэффициент корреляции и индекс детерминации
- •Интервальная оценка индивидуального значения зависимой переменной в парной регрессионной модели
- •К оличественные характеристики взаимосвязи пары случайных переменных Корреляция, ковариация, индекс детерминации и стат. Фишера.
- •Фиктивная переменная наклона: назначение; спецификация регрессионной модели с фиктивной переменной наклона; значение параметра при фиктивной переменной
- •Дифференциальный закон распределения как характеристика случайной переменной (я так поняла, что это нормальный закон распределения непрерывной св)
- •Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам. Через Поиск решения к.76
- •Эконометрическая инвестиционная модель Самуэльсона-Хикса. Оценка коэффициентов модели Самуэльсона-Хикса
- •Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов Делить большие остатки
- •Составление спецификации модели временного ряда (Ахтунг! сдуто из книги Катаргина частично)
- •29) Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных
- •Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений
- •Дополнение к вопросу 26 Алгоритм проверки значимости регрессора в парной регрессионной модели.
- •Настройка модели с системой одновременных уравнений
- •Структура экономических задач. Математическая модель объекта
- •Что такое Метод наибольшего правдоподобия
- •Что такое стационарный процесс
- •37) Спецификация моделей со случайными возмущениями и преобразование их к системе нормальных уравнений Текст в почте
- •3 8. Оценивание линейной модели множественной регрессии в Excel
- •3 9. Алгоритм проверки адекватности парной регрессионной модели.
- •41. Автокорреляция случайного возмущения. Причины. Последствия
- •43) Коэффициент детерминации в регрессионной модели
41. Автокорреляция случайного возмущения. Причины. Последствия
Автокорреляция случайных возмущений означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии.
В классической регрессионной модели выполнение третьего условия Гаусса-Маркова (Соv(εt εS) = 0,при t ≠ s) гарантирует некоррелированность значений случайных членов в различные моменты наблюдений и это позволяет получить несмещенные МНК-оценки с минимальной дисперсией. Зависимость значений случайных членов в различные моменты времени называется автокорреляцией (сериальной корреляцией).
Формальной причиной автокорреляции в регрессионных моделях является нарушение третьего условия теоремы Гаусса-Маркова, действительной же причиной может быть: неправильная спецификация переменных (пропуск важной объясняющей переменной); наличие неучтенных факторов; использование ошибочной функциональной зависимости, а иногда и характер наблюдений (например, временные ряды).
Для проверки на автокорреляцию используется ряд критериев, из которых наиболее широкое применение получил критерий Дарбина-Уотсона
Последствия автокорреляции в определенной степени сходны с последствиями гетероскедастичности. Среди них при применении МНК обычно выделяются следующие:
Оценки параметров, оставаясь линейными и несмещенными, перестают быть эффективными. Следовательно, они перестают обладать свойствами наилучших линейных несмещенных оценок
Дисперсии оценок являются смещенными. Зачастую дисперсии, вычисляемые по стандартным формулам, являются заниженными, что приводит к увеличению t-статистик. Это может привести к признанию статистически значимыми объясняющие переменные, которые в действительности таковыми могут и не являться.
Оценка дисперсии регрессии
является смещенной оценкой истинного
значения
,
во многих случаях занижая его.В силу вышесказанного выводы по t- и F-статистикам, определяющим значимость коэффициентов регрессии и коэффициента детерминации, возможно, будут неверными. Вследствие этого ухудшаются прогнозные качества модели.
43) Коэффициент детерминации в регрессионной модели
В
ведем
обозначения
TSS – общая сумма квадратов эндогенной переменной (Total sum of squares )
RSS – регрессионная сумма квадратов (Regression sum of squares)
ESS – сумма квадратов остатков (ошибок) (Error sum of squares)
TSS = RSS + ESS
В качестве показателя степени влияния выбранного регрессора на поведение эндогенной переменной принимается отношение:
R2 – называется коэффициентом детерминации
Он характеризует долю результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:
0≤ R2≤1. причем если R2= 1 то переменная yt полностью объясняется регрессором xt.
В множественной регрессионной модели добавление дополнительных регрессоров увеличивает значение коэффициента детерминации, поэтому его корректируют с учетом числа независимых переменных:
