
- •Содержание
- •Предисловие
- •Лекция №1. Введение
- •1. Предмет физики и её связь с математикой и информатикой
- •2. Методы физических исследований
- •3. Роль модельных представлений в физике
- •Контрольные вопросы
- •Лекция №2. Кинематика материальной точки
- •1. Кинематические законы движения материальной точки
- •Зависимость (2.3)
- •3. Скорость материальной точки
- •3. Ускорение материальной точки
- •4. Ускорение при движении материальной точки по окружности
- •5. Кинематика вращательного движения материальной точки
- •Контрольные вопросы
- •Лекция №3. Динамика материальной точки
- •1. Первый закон Ньютона
- •2. Масса
- •3. Сила
- •4. Второй закон Ньютона
- •5. Третий закон Ньютона
- •6. Импульс. Общая формулировка второго закона Ньютона
- •7. Гравитационные силы (силы тяготения)
- •8. Сила тяжести и вес. Невесомость
- •9. Силы трения
- •10. Упругие силы
- •Контрольные вопросы
- •Лекция №4. Динамика системы материальных точек
- •1. Центр масс системы материальных точек
- •2. Закон сохранения импульса
- •Движение каждой точки описывается вторым законом Ньютона:
- •3. Движение тел с переменной массой. Реактивное движение
- •Контрольные вопросы
- •Лекция №5. Законы сохранения
- •1. Работа
- •2. Энергия и работа
- •3. Кинетическая энергия и работа
- •4. Потенциальная энергия
- •5. Энергия упругой деформации
- •Потенциальная энергия упруго деформированного стержня равна
- •6. Закон сохранения и превращения механической энергии
- •7. Соударение двух тел
- •8. Момент силы относительно неподвижного центра
- •9. Момент импульса относительно неподвижного центра
- •10. Закон сохранения момента импульса
- •Контрольные вопросы
- •Лекция №6. Механика твердого тела
- •1. Понятие об абсолютно твердом теле
- •2. Твердое тело как система материальных точек
- •3. Поступательное движение твердого тела
- •4. Вращательное движение твердого тела
- •5. Момент силы относительно оси
- •6. Второй закон Ньютона для вращающегося твердого тела
- •7. Момент инерции твердого тела
- •8. Теорема Штейнера
- •9. Закон сохранения момента импульса при вращательном движении
- •10. Кинетическая энергия вращающегося тела
- •11. Кинетическая энергия тела при плоском движении
- •Контрольные вопросы
- •Лекция №7. Механика жидкостей и газов
- •1. Механические свойства жидкостей и газов
- •2. Гидростатика
- •3.Гидродинамика
- •4. Описание движения жидкостей. Уравнение неразрывности струи
- •5. Уравнение Бернулли
- •6. Вязкость
- •7. Ламинарное и турбулентное течения
- •8. Течение вязкой жидкости в круглой трубе. Формула Пуазейля
- •9. Движение тел в жидкостях и газах. Закон Стокса
- •10. Истечение жидкости из отверстия
- •Контрольные вопросы
- •Лекция №8. Механические колебания и волны
- •1. Гармонические колебания и их характеристики
- •2. Динамика колебательного движения
- •3. Гармонический осциллятор. Пружинный, физический и математический маятники
- •4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5. Свободные затухающие колебания
- •7. Вынужденные колебания
- •8. Амплитуда и фаза вынужденных колебаний. Резонанс
- •9. Распространение колебаний в однородной упругой среде. Волны
- •10. Уравнение плоской и сферической бегущей волны. Фазовая скорость. Волновое уравнение
- •11. Принцип суперпозиции. Групповая скорость
- •12. Энергия упругой волны
- •13. Интерференция волн
- •14. Стоячие волны
- •15. Характеристика звуковых волн
- •16. Эффект Доплера в акустике
- •17. Ультразвук и eго применение
- •Контрольные вопросы
- •Лекция № 9. Элементы специальной теории относительности
- •1. Преобразования Галилея. Механический принцип относительности
- •2. Постулаты специальной (частной) теории относительности
- •3. Преобразования Лоренца
- •4. Следствия из преобразований Лоренца
- •5. Интервал между событиями
- •6. Основной закон релятивистской динамики материальной точки
- •7. Взаимосвязь массы и энергии
- •Контрольные вопросы
- •Список литературы
2. Методы физических исследований
Методом физических исследований является материалистическая диалектика, рассматривающая все явления окружающего нас мира в их взаимосвязи и взаимодействии, в их развитии и изменении. Поэтому рассматриваемые ниже методы физических исследований применимы и в других естественных науках.
Всякое физическое исследование начинается с наблюдения, т.е. с изучения физических явлений в естественной, природной обстановке. Затем на основании размышлений и логических обобщений высказывается рабочая гипотеза – научное предположение, объясняющее эти явления. Гипотеза проверяется экспериментом, т.е. изучением явлений путем их воспроизведения в искусственных, лабораторных условиях. Гипотеза, подтвержденная экспериментом, становится научной теорией. Физическая теория представляет собой систему основных идей, обобщающих опытные данные и отражающих объективные закономерности природы. Физическая теория дает объяснение целой области явлений природы с единой точки зрения. Теория в дальнейшем подвергается неоднократной проверке практикой, которая вносит в теорию многочисленные дополнения и уточнения.
В связи с изложенным целесообразно сделать одно замечание о связи теории и эксперимента в физике. Теория играет исключительно важную роль. Без нее современная физика немыслима. Однако необходимо правильно представлять себе истинную роль теории в физике. Чистая теория в основном основывается на математике, а математика имеет дело с абстрактными объектами и понятиями, подчиняющимися определенной системе аксиом. Единственное требование, предъявляемое в чистой математике к ее понятиям и аксиомам, сводится к их логической непротиворечивости. Все свои результаты чистая математика получает из этих аксиом путем логических рассуждений, основанных на правилах формальной логики. Содержание этих результатов, очевидно, не может выйти за пределы логических связей между различными объектами и понятиями чистой математики. В этом смысле чистая математика является логически замкнутой дисциплиной. Такая замкнутость и логическая согласованность придают чистой математике, а, следовательно, и теории эстетическую привлекательность и доставляют чувство глубокого удовлетворения всякому уму.
Однако нужно заметить, что строго замкнутая сама в себе теория оторвана от реальной действительности и не может быть использована в других науках и практической деятельности человека. Чтобы теория стала мощным средством при физических исследованиях, необходимо установить связи между абстрактными математическими объектами и понятиями – с одной стороны – и реальными объектами и явлениями природы – с другой. Математические понятия и объекты должны появляться не как чисто логические категории, а как абстракции каких-то реальных объектов или процессов природы. Так, точка является абстракцией физического тела достаточно малых размеров, прямая линия – абстракцией достаточно тонкого твердого стержня или светового пучка в однородной среде. Вопрос о справедливости математики сводится к справедливости ее аксиом. Справедливость же самих аксиом может быть установлена опытным и только опытным путем.
Правда, опыт с математическими объектами нельзя осуществить в чистом виде, поскольку эти объекты являются идеализациями и не встречаются в природе. Всякий опыт выполняется с реальными телами. Математическую строгость надо понимать в смысле логической согласованности ее выводов, но не в смысле обоснования математических аксиом.
Одной математической строгости недостаточно для физики, как и для всякой другой опытной науки, имеющей дело с реальными объектами и явлениями природы. Всякое теоретическое исследование, выполненное математически строго, никогда не может считаться и физически строгим. Во-первых, такие исследования всегда основываются на определенных законах, справедливость которых в конце концов доказывается опытным путем, а опыты и физические измерения неизбежно сопровождаются ошибками, т.е. выполняются с определенной точностью. Вне пределов этой точности физический закон может оказаться не верным. Во-вторых, всякий реальный физический объект характеризуется бесконечным разнообразием свойств. Учесть все эти свойства невозможно не только потому, что большинство из них нам просто неизвестно, но и потому, что это практически не осуществимо. При построении теории физика заменяет реальные объекты их идеализированными моделями, приблизительно правильно передающими не все свойства реальных объектов, а только те из них, которые существенны в рассматриваемом круге вопросов. Какие свойства реальных объектов существенны, а какие не играют заметной роли – на этот вопрос в конце концов может ответить только опыт, которому принадлежит решающее слово в вопросе о правильности всякой физической теории и пределах ее применимости. Если физический закон применен вне области, где он справедлив, а идеализированная модель правильно передает не все свойства реальных объектов, существенные для рассматриваемого круга явлений, то возникающие вследствие этого пороки теории, понятно, не могут быть исправлены никакой строгостью математических рассуждений и расчетов.
Последнее замечание имеет и практическую ценность. Конечно, после того как идеализированная модель построена, не будет ошибкой производить все дальнейшие расчеты математически абсолютно точно, хотя при этом и использовались физические законы, верные только приближенно. Однако сплошь и рядом такие расчеты очень громоздки и даже практически не осуществимы из-за их сложности. Между тем точность уже обесценена ошибками физических законов и несовершенствами идеализированной модели, положенной в основу расчета. Поэтому можно и нужно перейти к приближенным расчетам. Такие расчеты столь же хороши, что и «точные», если их ошибки не превосходят ошибок, обусловленных неточностью применяемых физических законов и несовершенствами идеализированных моделей.