
- •Учебное пособие по дисциплине «Моделирование» содержание
- •1. Основные определения и понятия теории моделирования, области использования
- •2. Основные методы моделирования
- •3. Классификация видов моделирования
- •4. Математические модели систем
- •5. Основные подходы к построению моделей системы
- •6. Введение в имитационное моделирование систем
- •6.1. Проблемы применения имитационного моделирования
- •6.2. Принцип t и особых состояний z
- •6.3. Пример использования принципа при моделировании системы
- •6.4. Пример использования принципа особых состояний при моделировании системы
- •7. Математические основы имитационного моделирования
- •7.1. Методы генерации случайных чисел
- •7.2. Методы имитационного моделирования случайных величин
- •7.3. Имитационное моделирование случайных событий
- •8. Статистическое моделирование
- •8.1. Метод статистического моделирования
- •8.2. Обработка результатов моделирования
- •9. Элементы теории Марковских случайных процессов, используемые при моделировании систем
- •9.1. Потоки событий
- •9.2. Марковский случайный процесс
- •9.3. Марковский случайный процесс «гибели и размножения»
- •10. Элементы теории массового обслуживания, применяемые при моделировании систем
- •10.1. Основные определения и понятия. Структура смо. Классификация смо
- •10.2. Системы массового обслуживания, в которых протекает Марковский случайный процесс «гибели и размножения»
- •10.2.1. Основные типы систем, соответствующие процессу «гибели и размножения»
- •10.2.2. Расчет характеристик смо на основе использования аналитического метода
- •1. Расчет многоканальных систем без потерь с неограниченным ожиданием и бесконечным потоком требований на входе (разомкнутые системы)
- •2. Расчет многоканальных систем с отказами и бесконечным потоком требований на входе (разомкнутые системы)
- •3. Расчет многоканальных систем без потерь с источником конечного числа требований (замкнутые системы)
- •4. Смо с «взаимопомощью» между каналами
- •5. Смо с ошибками в обслуживании
- •11. Инструментальные средства моделирования
- •11.1. Классы инструментальных средств
- •11.2. Технология разработки имитационной модели
- •11.3. Моделирование работы вычислительной системы в среде gpss/World
- •3. Моделирование одноканальных устройств
- •4. Очереди. Блоки queue и depart
- •5. Моделирование многоканальных устройств
- •11.4. Моделирование значений случайной величины с заданным законом распределения и обработка результатов моделирования средствами gpss/World
- •1. Моделирование последовательности значений случайных величин с заданным законом распределения
- •2. Обработка результатов моделирования
- •11.5. Основные направления развития инструментальных средств моделирования
- •Список литературы
6.2. Принцип t и особых состояний z
Задачей имитационного моделирования является получение траектории движения рассматриваемой системы в n – мерном пространстве (Z1, Z2, … Zn), а также вычисление некоторых показателей, зависящих от выходных сигналов системы и характеризующих ее свойства.
В данном случае "движение" системы понимается в общем смысле – как любое изменение, происходящее в ней.
Известны
два принципа построения модели процесса
функционирования систем: принцип
Δt и принцип особых состояний (
).
Принцип Δt
Предположим,
что начальное состояние системы
соответствует значениям
.
Принцип Δt предполагает преобразование
модели системы к такому виду, чтобы
значения
в
момент времени t1=
t0+Δt
можно было вычислить через начальные
значения
,
а в момент t2=
t1+Δt
через значения
на
предшествующем шаге и так для каждого
i-ого шага (Δt=const, i=1…M).
Принцип Δt является универсальным, применим для широкого класса систем. Его недостатком является неэкономичность с точки зрения затрат машинного времени. Пример системы, которая моделируется на основе использования принципа Δt – устройство, возводящее в квадрат входной сигнал каждый такт времени или дифференцирующий фильтр.
Принцип особых состояний (принцип ).
При рассмотрении некоторых видов систем можно выделить два вида состояний:
обычное, в котором система находится большую часть времени, при этом Zi(t), (i=1
n) изменяются плавно.
особое, характерное для системы в некоторые моменты времени, причем состояние системы изменяется в эти моменты скачком.
Принцип особых состояний отличается от принципа Δt тем, что шаг по времени в этом случае не постоянен, является величиной случайной и вычисляется в соответствии с информацией о предыдущем особом состоянии.
Примерами систем, имеющих особые состояния, являются системы массового обслуживания. Особые состояния появляются в моменты поступления заявок, в моменты освобождения каналов и т.д.
Для таких систем применение принципа Δt является нерациональным, так как при этом возможны пропуски особых состояний и необходимы методы их обнаружения.
Например, для системы массового обслуживания (Q-схемы) в качестве особых состояний могут быть выбраны состояния в моменты поступления заявок на обслуживание в прибор П и в моменты окончания обслуживания заявок каналами К, когда состояние системы, оцениваемое числом находящихся в ней заявок, меняется скачком.
Отметим, что характеристики процесса функционирования таких систем с особыми состояниями оцениваются по информации об особых состояниях, а неособые состояния при моделировании не рассматриваются. «Принцип z» дает возможность для ряда систем существенно уменьшить затраты машинного времени на реализацию моделирующих алгоритмов по сравнению с «принципом t». Логика построения моделирующего алгоритма, реализующего «принцип z», отличается от рассмотренной для «принципа t» только тем, что включает в себя процедуру определения момента времени t, соответствующего следующему особому состоянию системы. Для исследования процесса функционирования больших систем рационально использование комбинированного принципа построения моделирующих алгоритмов, сочетающего в себе преимущества каждого из рассмотренных принципов.